Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 6/2014

01.06.2014 | LCA AND CHEMISTRY

Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets

verfasst von: Alfredo Pizza, Renaud Metz, Mehrdad Hassanzadeh, Jean-Louis Bantignies

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. Nanofillers are preferred to traditional ones, due to their low percolation threshold resulting from their high aspect ratio. Beyond these considerations, it is imperative that the development of such new fillers takes place in a safe and sustainable manner. A conventional life cycle assessment (LCA) has been conducted on epoxy-based composites, filled with graphite nanoplatelets (GnP). In particular, this study focuses on energy requirements for the production of such composites, in order to stress environmental hot spots and primary energy of GnP production process (nano-wastes and nanoparticles emissions are not included).

Methods

A cradle-to-grave approach has been employed for this assessment, in an attributional modeling perspective. The data for the LCA have been gathered from both laboratory data and bibliographic references. A technical LCA software package, SimaPro (SimaPro 7.3), which contains Ecoinvent (2010) life cycle inventory (LCI) database, has been used for the life cycle impact assessment (LCIA), studying 13 mid-point indicators. Sensitivity and uncertainty analyses have also been performed.

Results and discussion

One kilogram of GnP filler requires 1,879 MJ of primary energy while the preparation of 1 kg of epoxy composite loaded with 0.058 kg of GnP 303 MJ. Besides energy consumption in the filler preparation, it is shown that the thermoset matrix material has also a non-negligible impact on the life cycle despite the use of GnP: the primary energy required to make epoxy resin is 187 MJ, i.e., 62 % of the total energy to make 1 kg of composite.

Conclusions

Raw material extraction and filler and resin preparation phase exhibit the highest environmental impact while the composite production is negligible. Thermosetting resin remains the highest primary energy demand when used as matrix for GnP fillers. The result of the sensitivity analysis carried out on the electricity mix used during the GnP and the composite production processes does not affect the conclusions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mat 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mat 10:569–581CrossRef
Zurück zum Zitat Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean Soil Air Water 36(8):657–661CrossRef Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean Soil Air Water 36(8):657–661CrossRef
Zurück zum Zitat Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708CrossRef Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708CrossRef
Zurück zum Zitat Brander M, Tipper R, Hutchison C, Davis G (2009) Consequential and attributional approaches to LCA: a guide to policy makers with specific reference to greenhouse gas LCA of biofuels. Technical Paper TP090403A, Ecometrica Press Brander M, Tipper R, Hutchison C, Davis G (2009) Consequential and attributional approaches to LCA: a guide to policy makers with specific reference to greenhouse gas LCA of biofuels. Technical Paper TP090403A, Ecometrica Press
Zurück zum Zitat De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRef De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRef
Zurück zum Zitat Drazl LT, Fukushima H (2009) Expanded graphite and products produced therefrom. US Patent 7550529 B2 Drazl LT, Fukushima H (2009) Expanded graphite and products produced therefrom. US Patent 7550529 B2
Zurück zum Zitat Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Physiol Educ 51(1):1–186 Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Physiol Educ 51(1):1–186
Zurück zum Zitat Ebadi-Dehaghani H, Nazempour M (2012) Thermal Conductivity of nanoparticles filled polymers, smart nanoparticles technology. Dr. Abbass Hashim (ed), ISBN: 978-953-51-0500-8 Ebadi-Dehaghani H, Nazempour M (2012) Thermal Conductivity of nanoparticles filled polymers, smart nanoparticles technology. Dr. Abbass Hashim (ed), ISBN: 978-953-51-0500-8
Zurück zum Zitat Ecoinvent (2010) Ecoinvent data v2.2. Final reports Ecoinvent v 2.2 n. 1–25. Swiss Centre for Life Cycle Inventories, Dϋbendorf. The inventory data and reports are available in the LCA pc software SimaPro 7.3 Ecoinvent (2010) Ecoinvent data v2.2. Final reports Ecoinvent v 2.2 n. 1–25. Swiss Centre for Life Cycle Inventories, Dϋbendorf. The inventory data and reports are available in the LCA pc software SimaPro 7.3
Zurück zum Zitat Fukushima H, Drazl LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85(1):235–238 Fukushima H, Drazl LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85(1):235–238
Zurück zum Zitat Haddon RC, Itkis ME, Ramesh P, Yu A, Bekyarova E, Worsley K (2010) Graphite nanoplatelets for thermal end electrical applications. US Patent 0140792 A1 Haddon RC, Itkis ME, Ramesh P, Yu A, Bekyarova E, Worsley K (2010) Graphite nanoplatelets for thermal end electrical applications. US Patent 0140792 A1
Zurück zum Zitat Halliweel S (2006) Best practice guide, end of life options for composite waste. National Composites Network Halliweel S (2006) Best practice guide, end of life options for composite waste. National Composites Network
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRef
Zurück zum Zitat Harris PJF (2004) Carbon nanotube composites. Int Mat Rev 49(1):31–43CrossRef Harris PJF (2004) Carbon nanotube composites. Int Mat Rev 49(1):31–43CrossRef
Zurück zum Zitat Hassanzadeh M, Metz R, Germain E, Molino F, Bantignies JL (2012) Méthodologie optimisée pour l’analyse de cycle de vie des équipements électriques de moyenne tension. CONFérence FRancophone sur l'Eco-conception en Génie Electrique (Confrege 2012), Montreal, 28&30 Mai 2012 Hassanzadeh M, Metz R, Germain E, Molino F, Bantignies JL (2012) Méthodologie optimisée pour l’analyse de cycle de vie des équipements électriques de moyenne tension. CONFérence FRancophone sur l'Eco-conception en Génie Electrique (Confrege 2012), Montreal, 28&30 Mai 2012
Zurück zum Zitat Hassanzadeh M, Metz R, Theoleyre S, Jollain C (2013) Environmental Declaration in compliance with ISO 14025 thanks to a collaborative program of electrical and electronic industry: the PEP ecopassport program. 22nd International Conference on Electricity Distribution, Stockholm 10–13 June 2013 Hassanzadeh M, Metz R, Theoleyre S, Jollain C (2013) Environmental Declaration in compliance with ISO 14025 thanks to a collaborative program of electrical and electronic industry: the PEP ecopassport program. 22nd International Conference on Electricity Distribution, Stockholm 10–13 June 2013
Zurück zum Zitat King JA, Tucker KW, Vogt BD, Weber EH, Quan C (1999) Electrically and thermally conductive nylon 6,6. Polym Compos 20:643–654CrossRef King JA, Tucker KW, Vogt BD, Weber EH, Quan C (1999) Electrically and thermally conductive nylon 6,6. Polym Compos 20:643–654CrossRef
Zurück zum Zitat Kočí V, Loubal T (2012) LCA of liquid epoxy resin produced based on propylene and on glycerine. Acta Environmentalica Universitatis Comenianae, Bratislava 20(1):62–67, ISSN 1335–0285 Kočí V, Loubal T (2012) LCA of liquid epoxy resin produced based on propylene and on glycerine. Acta Environmentalica Universitatis Comenianae, Bratislava 20(1):62–67, ISSN 1335–0285
Zurück zum Zitat Kwon YB, Kwon OY, Choi SW, Kim SW (2001) Method for producing expanded graphite. US Patent 6306264 B1 Kwon YB, Kwon OY, Choi SW, Kim SW (2001) Method for producing expanded graphite. US Patent 6306264 B1
Zurück zum Zitat Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614CrossRef Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614CrossRef
Zurück zum Zitat McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef
Zurück zum Zitat Nor YM (1987) Ecotoxicity of copper to aquatic biota: a review. Environ Res 43(1):274–282CrossRef Nor YM (1987) Ecotoxicity of copper to aquatic biota: a review. Environ Res 43(1):274–282CrossRef
Zurück zum Zitat Pickering SJ (2006) Recycling technologies for thermoset composite materials-current status. Compos Part A: Appl Sci Manuf 37(8):1206–1215CrossRef Pickering SJ (2006) Recycling technologies for thermoset composite materials-current status. Compos Part A: Appl Sci Manuf 37(8):1206–1215CrossRef
Zurück zum Zitat Segal M (2009) Selling graphene by the ton. Nat Nanotechnol 4:612–614CrossRef Segal M (2009) Selling graphene by the ton. Nat Nanotechnol 4:612–614CrossRef
Zurück zum Zitat Shahill KMF, Balandin AA (2012) Thermal properties of graphene and multilayers graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef Shahill KMF, Balandin AA (2012) Thermal properties of graphene and multilayers graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef
Zurück zum Zitat Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47CrossRef Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47CrossRef
Zurück zum Zitat Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744CrossRef Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744CrossRef
Metadaten
Titel
Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets
verfasst von
Alfredo Pizza
Renaud Metz
Mehrdad Hassanzadeh
Jean-Louis Bantignies
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 6/2014
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-014-0733-2

Weitere Artikel der Ausgabe 6/2014

The International Journal of Life Cycle Assessment 6/2014 Zur Ausgabe