Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 11/2014

01.11.2014 | LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS

Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy

verfasst von: Mitja Mori, Miha Jensterle, Tilen Mržljak, Boštjan Drobnič

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The paper provides an empirical assessment of an uninterruptible power supply (UPS) system based on hydrogen technologies (HT-UPS) using renewable energy sources (RES) with regard to its environmental impacts and a comparison to a UPS system based on the internal combustion engine (ICE-UPS).

Methods

For the assessment and comparison of the environmental impacts, the life-cycle assessment (LCA) method was applied, while numerical models for individual components of the UPS systems (electrolyser, storage tank, fuel cell and ICE) were developed using GaBi software. The scope of analysis was cradle-to-end of utilisation with functional unit 1 kWh of uninterrupted electricity produced. For the life-cycle inventory analysis, quantitative data was collected with on-site measurements on an experimental system, project documentation, GaBi software generic databases and literature data. The CML 2001 method was applied to evaluate the system’s environmental impacts. Energy consumption of the manufacturing phase was estimated from gross value added (GVA) and the energy intensity of the industry sector in the manufacturer’s country.

Results and discussion

In terms of global warming (GW), acidification (A), abiotic depletion (AD) and eutrophication (E), manufacturing phase of HT-UPS accounts for more than 97 % of environmental impacts. Electrolyser in all its life-cycle phases contributes above 50 % of environmental impacts to the system’s GW, A and AD. Energy return on investment (EROI) for the HT-UPS has been calculated to be 0.143 with distinction between renewable (roughly 60 %) and non-renewable energy resources inputs. HT-UPS’s life-cycle GW emissions have been calculated to be 375 g of CO2 eq per 1 kWh of uninterruptible electric energy supplied. All these values have also been calculated for the ICE-UPS and show that in terms of GW, A and AD, the ICE-UPS has bigger environmental impacts and emits 1,190 g of CO2 eq per 1 kWh of uninterruptible electric energy supplied. Both systems have similar operation phase energy efficiency. The ICE-UPS has a higher EROI but uses almost none RES inputs.

Conclusions

The comparison of two different technologies for providing UPS has shown that in all environmental impact categories, except eutrophication, the HT-UPS is the sounder system. Most of HT-UPS’s environmental impacts result from the manufacturing phase. On the contrary, ICE-UPS system’s environmental impacts mainly result from operational phase. Efficiency of energy conversion from electricity to hydrogen to electricity again is rather low, as is EROI, but these will likely improve as the technology matures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson D, Leach M (2004) Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energ Policy 32:1603–1614CrossRef Anderson D, Leach M (2004) Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energ Policy 32:1603–1614CrossRef
Zurück zum Zitat Barnhart CJ, Dale M, Brandt AR, Benson SM (2013) The energetic implications of curtailing versus storing, solar- and wind-generated electricity. Energy Environ Sci 6:2804–2810CrossRef Barnhart CJ, Dale M, Brandt AR, Benson SM (2013) The energetic implications of curtailing versus storing, solar- and wind-generated electricity. Energy Environ Sci 6:2804–2810CrossRef
Zurück zum Zitat Cetinkaya E, Dincer I, Naterer G (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrog Energy 37:2071–2080CrossRef Cetinkaya E, Dincer I, Naterer G (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrog Energy 37:2071–2080CrossRef
Zurück zum Zitat Cicconardi SP, Jannelli E, Spazzafumo G (1997) Hydrogen energy storage: hydrogen and oxygen storage subsystems. Int J Hydrog Energy 22(9):897–902CrossRef Cicconardi SP, Jannelli E, Spazzafumo G (1997) Hydrogen energy storage: hydrogen and oxygen storage subsystems. Int J Hydrog Energy 22(9):897–902CrossRef
Zurück zum Zitat Dufour J, Serrano DP, Gálvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrog Energy 39:1370–1376CrossRef Dufour J, Serrano DP, Gálvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrog Energy 39:1370–1376CrossRef
Zurück zum Zitat El-Shatter TF, Eskander MN, El-Hagry MT (2002) Hybrid PV/fuel cell system design and simulation. Renew Energy 27:479–485CrossRef El-Shatter TF, Eskander MN, El-Hagry MT (2002) Hybrid PV/fuel cell system design and simulation. Renew Energy 27:479–485CrossRef
Zurück zum Zitat El-Shatter TF, Eskander MN, El-Hagry MT (2006) Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Convers Manag 47:1264–1280CrossRef El-Shatter TF, Eskander MN, El-Hagry MT (2006) Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Convers Manag 47:1264–1280CrossRef
Zurück zum Zitat EPRIsolutions (2001) Uninterruptible power supply using a PEM fuel cell—design, construction and test, Palo Alto, CA, USA EPRIsolutions (2001) Uninterruptible power supply using a PEM fuel cell—design, construction and test, Palo Alto, CA, USA
Zurück zum Zitat Glavina U (2008) Usage of extracted hydrogen from wood biomass in fuel cell cogeneration systems. Master Thesis, University of Ljubljana, Faculty of Mechanical Engineering Glavina U (2008) Usage of extracted hydrogen from wood biomass in fuel cell cogeneration systems. Master Thesis, University of Ljubljana, Faculty of Mechanical Engineering
Zurück zum Zitat Guinée JB (ed) (2002) Handbook on life cycle assessment. Kluwer Academic Publishers, Dordrecht Guinée JB (ed) (2002) Handbook on life cycle assessment. Kluwer Academic Publishers, Dordrecht
Zurück zum Zitat Hart D (2000) Sustainable energy conversion—fuel cells—the competitive option. J Power Sources 86:23–27CrossRef Hart D (2000) Sustainable energy conversion—fuel cells—the competitive option. J Power Sources 86:23–27CrossRef
Zurück zum Zitat Heijungs R (2014) Ten easy lessons for good communication of LCA. Int J Life Cycle Assess 19(3):473–476CrossRef Heijungs R (2014) Ten easy lessons for good communication of LCA. Int J Life Cycle Assess 19(3):473–476CrossRef
Zurück zum Zitat Hussain MM, Dincer I, Li X (2007) A preliminary life cycle assessment of PEM fuel cell powered automobiles. Appl Therm Eng 27:2294–2299CrossRef Hussain MM, Dincer I, Li X (2007) A preliminary life cycle assessment of PEM fuel cell powered automobiles. Appl Therm Eng 27:2294–2299CrossRef
Zurück zum Zitat Hwang J-J et al (2013) Lifecycle performance assessment of fuel cell/battery electric vehicles. Int J Hydrog Energy 38:3433–3446CrossRef Hwang J-J et al (2013) Lifecycle performance assessment of fuel cell/battery electric vehicles. Int J Hydrog Energy 38:3433–3446CrossRef
Zurück zum Zitat International Energy Agency (IEA) (2011) World energy outlook 2011, Paris International Energy Agency (IEA) (2011) World energy outlook 2011, Paris
Zurück zum Zitat International Organisation for Standardisation (2006a) ISO 14040—environmental management—life cycle assessment—principle and framework International Organisation for Standardisation (2006a) ISO 14040—environmental management—life cycle assessment—principle and framework
Zurück zum Zitat International Organisation for Standardisation (2006b) ISO 14044—environmental management—life cycle assessment—requirements and guidelines International Organisation for Standardisation (2006b) ISO 14044—environmental management—life cycle assessment—requirements and guidelines
Zurück zum Zitat Jensterle M (2012) Evaluation of hydrogen technologies in advanced energy systems by methods of life cycle analysis, Master Thesis, University of Ljubljana, Faculty of Mechanical Engineering Jensterle M (2012) Evaluation of hydrogen technologies in advanced energy systems by methods of life cycle analysis, Master Thesis, University of Ljubljana, Faculty of Mechanical Engineering
Zurück zum Zitat Koroneus C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrog Energy 29:1443–1450CrossRef Koroneus C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrog Energy 29:1443–1450CrossRef
Zurück zum Zitat Lacko R, Drobnič B, Leban M (2013) Hydrogen technologies in self-sufficient energy system with renewables. J Energy Technol 6(3):11–24 Lacko R, Drobnič B, Leban M (2013) Hydrogen technologies in self-sufficient energy system with renewables. J Energy Technol 6(3):11–24
Zurück zum Zitat Lacko R, Drobnič B, Sekavčnik M, Mori M (2014) Hydrogen energy system with renewables for isolated households: the optimal system design, numerical analysis and experimental evaluation. Energy Build 80:106–113CrossRef Lacko R, Drobnič B, Sekavčnik M, Mori M (2014) Hydrogen energy system with renewables for isolated households: the optimal system design, numerical analysis and experimental evaluation. Energy Build 80:106–113CrossRef
Zurück zum Zitat Lotrič A, Sekavčnik M, Kunze C, Spliethoff H (2011) Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO2 capture. J Mech Eng 57(12):911–926CrossRef Lotrič A, Sekavčnik M, Kunze C, Spliethoff H (2011) Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO2 capture. J Mech Eng 57(12):911–926CrossRef
Zurück zum Zitat Milewski J, Miller A, Badyda K (2010) The control strategy for high temperature fuel cell hybrid systems. Online J Electron Electr Eng 2(4):331–335 Milewski J, Miller A, Badyda K (2010) The control strategy for high temperature fuel cell hybrid systems. Online J Electron Electr Eng 2(4):331–335
Zurück zum Zitat Mori M, Mržljak T, Drobnič B, Sekavčnik M (2013) Integral characteristics of hydrogen production in alkaline electrolysers. J Mech Eng 59(10):585–594, ISSN 0039–2480CrossRef Mori M, Mržljak T, Drobnič B, Sekavčnik M (2013) Integral characteristics of hydrogen production in alkaline electrolysers. J Mech Eng 59(10):585–594, ISSN 0039–2480CrossRef
Zurück zum Zitat Moomaw W, Burgherr P, Heath G, Lentzen M, Nyboer J, Verbruggen A (2011) Special report on renewable energy sources and climate change mitigation, Annex II. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA Moomaw W, Burgherr P, Heath G, Lentzen M, Nyboer J, Verbruggen A (2011) Special report on renewable energy sources and climate change mitigation, Annex II. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Zurück zum Zitat Morton O (2006) Solar energy: a new day dawning? Silicon Valley sunrise. Nature 443:19–22CrossRef Morton O (2006) Solar energy: a new day dawning? Silicon Valley sunrise. Nature 443:19–22CrossRef
Zurück zum Zitat Ogden J (1999) Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 24:227–279CrossRef Ogden J (1999) Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 24:227–279CrossRef
Zurück zum Zitat Patyk A, Bachmann TA, Brisse A (2013) Life cycle assessment of H2 generation with high temperature electrolysis. Int J Hydrog Energy 38:3865–3880CrossRef Patyk A, Bachmann TA, Brisse A (2013) Life cycle assessment of H2 generation with high temperature electrolysis. Int J Hydrog Energy 38:3865–3880CrossRef
Zurück zum Zitat Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydrog Energy 10:91–101CrossRef Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydrog Energy 10:91–101CrossRef
Zurück zum Zitat Pereira SR, Coelho MC (2013) Life cycle analysis of hydrogen—a well-to-wheels analysis for Portugal. Int J Hydrog Energy 38:2029–2038CrossRef Pereira SR, Coelho MC (2013) Life cycle analysis of hydrogen—a well-to-wheels analysis for Portugal. Int J Hydrog Energy 38:2029–2038CrossRef
Zurück zum Zitat Sherif S, Barbir F, Veziroglu TN (2005) Wind energy and the hydrogen economy—review of the technology. Sol Energy 78:647–660CrossRef Sherif S, Barbir F, Veziroglu TN (2005) Wind energy and the hydrogen economy—review of the technology. Sol Energy 78:647–660CrossRef
Zurück zum Zitat Slovenian Environment Agency (2008) Test reference year, Ljubljana, 2008 Slovenian Environment Agency (2008) Test reference year, Ljubljana, 2008
Zurück zum Zitat Smitkova M, Janíček F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrog Energy 36:7844–7851CrossRef Smitkova M, Janíček F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrog Energy 36:7844–7851CrossRef
Zurück zum Zitat Sovacool BK (2008) Valuing the greenhouse gas emissions from nuclear power: a critical survey. Energ Policy 36:2940–2953 Sovacool BK (2008) Valuing the greenhouse gas emissions from nuclear power: a critical survey. Energ Policy 36:2940–2953
Zurück zum Zitat Staffel I, Ingram A (2010) Life cycle assessment of an alkaline fuel cell CHP system. Int J Hydrog Energy 35:2491–2505CrossRef Staffel I, Ingram A (2010) Life cycle assessment of an alkaline fuel cell CHP system. Int J Hydrog Energy 35:2491–2505CrossRef
Zurück zum Zitat Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Life-cycle analysis of fuel cell system components. In: Handbook of fuel cells—fundamentals, technology and applications, Volume 4, Chapter 13. Chichester: John Wiley & Sons Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Life-cycle analysis of fuel cell system components. In: Handbook of fuel cells—fundamentals, technology and applications, Volume 4, Chapter 13. Chichester: John Wiley & Sons
Zurück zum Zitat Wee J-H (2007) Applications of proton exchange membrane fuel cell systems. Renew Sustain Energy Rev 11:1720–1738CrossRef Wee J-H (2007) Applications of proton exchange membrane fuel cell systems. Renew Sustain Energy Rev 11:1720–1738CrossRef
Metadaten
Titel
Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy
verfasst von
Mitja Mori
Miha Jensterle
Tilen Mržljak
Boštjan Drobnič
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 11/2014
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-014-0790-6

Weitere Artikel der Ausgabe 11/2014

The International Journal of Life Cycle Assessment 11/2014 Zur Ausgabe

NON-TOXIC IMPACT CATEGORIES ASSOCIATED WITH EMISSIONS TO AIR, WATER, SOIL

Improving odour assessment in LCA—the odour footprint