Skip to main content

Advertisement

Log in

Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology

  • LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Power-to-gas technology enables storage of surplus electricity from fluctuating renewable sources such as wind power or photovoltaics, by generating hydrogen (H2) via water electrolysis, with optional methane (CH4) synthesis from carbon dioxide (CO2) and H2; the advantage of the latter is that CH4 can be fed into existing gas infrastructure. This paper presents a life cycle assessment (LCA) of this technological concept, evaluating the main parameters influencing global warming potential (GWP) and primary energy demand.

Methods

The conducted LCA of power-to-gas systems includes the production of H2 or CH4 from cradle to gate. Product utilization was not evaluated but considered qualitatively during interpretation. Material and energy balances were modeled using the LCA software GaBi 5 (PE International). The assessed impacts of H2 and CH4 from power-to-gas were compared to those of reference processes, such as steam reforming of natural gas and crude oil as well as natural gas extraction. Sensitivity analysis was used to evaluate the influence of the type of electricity source, the efficiency of the electrolyzer, and the type of CO2 source used for methanation.

Results and discussion

The ecological performance of both H2 and CH4 produced via power-to-gas strongly depends on the electricity generation source. The assessed impacts of H2 production are only improved if GWP of the utilized electricity does not exceed 190 g CO2 per kWh. Due to reduced efficiency, the assessed impacts of CH4 are higher than that of H2. Thus, the environmental break-even point for CH4 production is 113 g CO2 per kWh if utilized CO2 is treated as a waste product, and 73 g CO2 per kWh if the CO2 separation effort is included. Electricity mix of EU-27 countries is therefore not at all suitable as an input. Utilization of renewable H2 and CH4 in the industry or the transport sector offers substantial reduction potential in GWP and primary energy demand.

Conclusions

H2 and CH4 production through power-to-gas with electricity from renewable sources, such as wind power or photovoltaics, offers substantial potential to reduce GWP and primary energy demand. However, the input of electricity predominately generated from fossil resources leads to a higher environmental impact of H2 and CH4 compared to fossil reference processes and is not recommended. As previously bound CO2 is re-emitted when CH4 is utilized for instance in vehicles, the type of CO2 source and the allocation method have a significant influence on overall ecological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi T, Abbasi SA (2011) Renewable hydrogen: prospects and challenges. Renew Sust Energ Rev 15(6):3034–3040

    Article  Google Scholar 

  • Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy 39:1–12

    Article  CAS  Google Scholar 

  • Anderson D, Leach M (2004) Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energ Policy 32:1603–1614

    Article  Google Scholar 

  • Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111

    Article  Google Scholar 

  • Breyer CH, Rieke S, Sterner M, Schmid J (2011) Hybrid PV-wind-renewable methane power plants. European Photovoltaic Solar Energy Conference, Germany, 2011. http://www.q-cells.com/uploads/tx_abdownloads/files/6CV.1.31_Breyer2011_HybPV-Wind-RPM-Plants_paper_PVSEC_preprint.pdf. Accessed 04 Mar 2014

  • Briguglio N, Andaloro L, Ferraro M, Di Blasi A, Dispenza G, Matteucci F, Breedveld L, Antonucci V (2010) Renewable energy for hydrogen production and sustainable urban mobility. Int J Hydrogen Energy 35:9996–10003

    Article  CAS  Google Scholar 

  • Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrogen Energy 37:2071–2080

    Article  CAS  Google Scholar 

  • Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases: commercial trends. Annual Meeting of the Canadian Society of Chemical Engineers, Canada

  • Cover AE, Hubbard DA, Jain SK, Shah KV, Koneru PB, Wong EW (1985) Review of selected shift and methanation processes for SNG production. Kellogg Rust Synfuels Inc., Texas

    Google Scholar 

  • De Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Series: eco-efficiency in industry and science. Kluwer Academic, Dordrecht

    Google Scholar 

  • De Koeijer G, Enge Y, Sanden K, Graff OF, Falk-Pedersen O, Amundsen T, Overa S (2011) CO2 Technology Centre Mongstad—design, functionality and emissions of the amine plant. Energy Procedia 4:1207–1213

    Article  Google Scholar 

  • Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manag 40:1899–1915

    Article  CAS  Google Scholar 

  • Dickinson RR, Battye DL, Linton VM, Ashman PJ, Nathan GJ (2010) Alternative carriers for remote renewable energy sources using existing CNG infrastructure. Int J Hydrogen Energy 35:1321–1329

    Article  CAS  Google Scholar 

  • Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energy 34:1370–1376

    Article  CAS  Google Scholar 

  • Edwards R, Larivé JF, Beziat JC (2011) Well-to-wheel analysis of future automotive fuels and power trains in the European context. Report version 3c. European Commission, Joint Research Center, Institute for Energy and Transport, Luxembourg. doi:10.2788/79018.

  • Freedonia Group (2010) Brochure world hydrogen—industry study with forecasts for 2013 & 2018. Cleveland, Ohio 2010. http//www.freedoniagroup.com/brochure/26xx/2605smwe.pdf. Accessed 26 Mar 2014

  • Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power to gas pilot plants for stationary applications. Int J Hydrogen Energy 38(5):2039–2061

    Article  CAS  Google Scholar 

  • Guinee JB, Gorree M, Heijungs R, Huppes G, Kleijn R, de Koning A (2001) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic, Dordrecht

    Google Scholar 

  • Haldor Topsoe (2009) From solid fuels to substitute natural gas (SNG) using TREMP™. http://www.topsoe.com/business_areas/gasification_based/~/media/PDF%20files/SNG/Topsoe_TREMP.ashx. Accessed 05 Mar 2014

  • IPCC, Intergovernmental Panel on Climate Change (2007) Climate change: synthesis report. IPCC, Geneva, p 104

    Google Scholar 

  • ISO 13686:1998 Natural gas—quality designation. International Organization for Standardization, Geneva, Switzerland

  • ISO 14040:2006 Environmental management—life cycle assessment—principles & framework. International Organization for Standardization, Geneva, Switzerland

  • ISO 14044:2006 Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization, Geneva, Switzerland

  • Jentsch M, Trost T, Sterner M (2011) Evaluation of power-to-gas as long-term storage concept regarding electricity and CO2 sources. 6th International Renewable Energy Storage Conference – IRES 2011. http://www.iwes.fraunhofer.de/en/publications/list_of_publication/2011/evaluation-of-power-to-gas-as-long-term-storage-concept-regardin/_jcr_content/pressrelease/linklistPar/download/file.res/2011-053_Evaluation_of_power-to-gas.pdf. Accessed 04 Mar 2014

  • Klöpffer W, Grahl B (2011) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. (Life cycle assessment: a guide for education and profession). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-32043-1

  • Kothandaraman A, Nord L, Bolland O, Herzog HJ, McRae GJ (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1:1373–1380

    Article  CAS  Google Scholar 

  • Lee JY, An S, Cha K, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35:2213–2225

    Article  CAS  Google Scholar 

  • Lee JY, Cha KH, Lim TW, Hur T (2011) Eco-efficiency of H2 and fuel cell buses. Int J Hydrogen Energy 36:1754–1765

    Article  CAS  Google Scholar 

  • Linßen J, Markewitz P, Martinsen D, Walbeck M (2006) The future of energy supply considering large-scale CCS (Zukünftige Energieversorgung unter den Randbedingungen einer großtechnischen CO2-Abscheidung und Speicherung), Forschungszentrum Jülich. https://www.cooretec.de/lw_resource/datapool/Neuigkeiten/Abschlussbericht.pdf. Accessed 05 Mar 2014

  • Ludwig Bölkow Systemtechnik. Hydrogen filling stations worldwide. http://www.h2stations.org. Accessed 17 Dec 2012

  • Maclay JD, Brouwer J, Samuelsen GS (2011) Experimental results for hybrid energy storage systems coupled to photovoltaic generation in residential applications. Int J Hydrogen Energy 36(19):12130–12140

    Article  CAS  Google Scholar 

  • Mangalapally HP, Hasse H (2011) Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia 4:1–8

    Article  CAS  Google Scholar 

  • Margni M, Curran MA (2012) Life cycle impact assessment. In: Curran MA (ed) Life cycle assessment handbook. A guide for environmentally sustainable products. Wiley

  • Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2006) IPCC special report on carbon dioxide capture and storage. Cambridge University Press

  • Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8(1):159–210

    Article  Google Scholar 

  • Müller B, Müller K, Teichmann D, Arlt W (2011) Energiespeicherung mittels Methan und energietragenden Stoffen – ein thermodynamischer Vergleich. Chem-Ing-Tech 83(II):2002–2013

  • PE International GaBi Software with built-in Database (DB) Version 5, 2013. Available from: http://www.gabi-software.com

  • Pieper C, Rubel H (2010) Electricity storage—making large-scale adoption of wind and solar energies a reality. The Boston Consulting Group. http://www.abve.org.br/downloads/BCG_-_Electricity_Storage.pdf. Accessed 04 Mar 2014

  • Rönsch S, Ortwein A (2011) Methanisierung von Synthesegasen - Grundlagen und Verfahrensentwicklungen. (Methanation of synthetic gas—fundamentals and process development). Chem-Ing-Tech 83(8):1200–1208

    Article  Google Scholar 

  • Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust 38:630–671

    Article  CAS  Google Scholar 

  • Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR (2005) Methanation of CO over nickel: mechanism and kinetics at high H2/CO ratios. J Phys Chem B 109:2432–2438

    Article  CAS  Google Scholar 

  • Smitkova M, Janicek F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrogen Energy 36:7844–7851

    Article  CAS  Google Scholar 

  • Smolinka T, Günther M, Garche J (2011) Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien. Kurzfassung NOW-Studie. Fraunhofer ISE, FCBAT. http://www.now-gmbh.de/fileadmin/user_upload/RE-Mediathek/RE_Publikationen_NOW/NOW-Studie-Wasserelektrolyse-2011.pdf. Accessed 17 Dec 2012

  • Sterner M (2009) Bioenergy and renewable power methane in integrated 100 % renewable energy systems. Dissertation, Kassel University

  • Sterner M, Jentsch M, Holzhammer U (2011) Energiewirtschaftliche und ökologische Bewertung eines Windgas-Angebotes. Fraunhofer IWES. http://michaelwenzl.de/wiki/_media/ee:greenpeace_energy_gutachten_windgas_fraunhofer_sterner.pdf. Accessed 18 Dec 2012

  • Ulleberg O, Nakken T, Ete A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy 35:1841–1852

    Article  CAS  Google Scholar 

  • Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100(2):410–426

    Article  CAS  Google Scholar 

  • Verein Deutscher Ingenieure e.V. (2012) VDI-Richtline 4600: cumulative energy demand (KEA)—terms, conditions, methods of calculation. VDI, Düsseldorf

  • Von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6:2721–2734

    Article  Google Scholar 

  • Wietschel M, Hasenauer U, de Groot A (2006) Development of European hydrogen infrastructure scenarios—CO2 reduction potential and infrastructure investment. Energ Policy 34:1284–1298

    Article  Google Scholar 

  • Wulf C, Kaltschmitt M (2012) Life cycle assessment of hydrogen supply chain with special attention on hydrogen refueling stations. Int J Hydrogen Energy 37:16711–16721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of this work by the association Energy Institute at the Johannes Kepler University and the Austrian Federal Ministry of Economy, Family and Youth is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerda Reiter.

Additional information

Responsible editor: Christian Bauer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S-1

GaBi process data sets applied in the life cycle assessment (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, G., Lindorfer, J. Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. Int J Life Cycle Assess 20, 477–489 (2015). https://doi.org/10.1007/s11367-015-0848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0848-0

Keywords

Navigation