Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2017

11.08.2015 | ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Environmental trade-offs across cascading lithium-ion battery life cycles

verfasst von: Kirti Richa, Callie W. Babbitt, Nenad G. Nenadic, Gabrielle Gaustad

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The purpose of this study was to analyze the environmental trade-offs of cascading reuse of electric vehicle (EV) lithium-ion batteries (LIBs) in stationary energy storage at automotive end-of-life.

Methods

Two systems were jointly analyzed to address the consideration of stakeholder groups corresponding to both first (EV) and second life (stationary energy storage) battery applications. The environmental feasibility criterion was defined by an equivalent-functionality lead-acid (PbA) battery. A critical methodological challenge addressed was the allocation of environmental impacts associated with producing LIBs across the EV and stationary use systems. The model also tested sensitivity to parameters such as the fraction of battery cells viable for reuse, service life of refurbished cells, and PbA battery efficiency.

Results and discussion

From the perspective of EV applications, cascading reuse of an LIB in stationary energy storage can reduce net cumulative energy demand and global warming potential by 15 % under conservative estimates and by as much as 70 % in ideal refurbishment and reuse conditions. When post-EV LIB cells were compared directly to a new PbA system for stationary energy storage, the reused cells generally had lower environmental impacts, except in scenarios where very few of the initial battery cells and modules could be reused and where reliability was low (e.g., life span of 1 year or less) in the secondary application.

Conclusions

These findings demonstrate that EV LIB reuse in stationary application has the potential for dual benefit—both from the perspective of offsetting initial manufacturing impacts by extending battery life span as well as avoiding production and use of a less-efficient PbA system. It is concluded that reuse decisions and diversion of EV LIBs toward suitable stationary applications can be based on life cycle centric studies. However, technical feasibility of these systems must still be evaluated, particularly with respect to the ability to rapidly analyze the reliability of EV LIB cells, modules, or packs for refurbishment and reuse in secondary applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmadi L, Fowler M, Young SB, Fraser RA, Gaffney B, Walker SB (2014a) Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustain Energy Technol Assess 8:9–17CrossRef Ahmadi L, Fowler M, Young SB, Fraser RA, Gaffney B, Walker SB (2014a) Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustain Energy Technol Assess 8:9–17CrossRef
Zurück zum Zitat Ahmadi L, Yip A, Fowler M, Young SB, Fraser RA (2014b) Environmental feasibility of re-use of electric vehicle batteries. Sustain Energy Technol Assess 6:64–74CrossRef Ahmadi L, Yip A, Fowler M, Young SB, Fraser RA (2014b) Environmental feasibility of re-use of electric vehicle batteries. Sustain Energy Technol Assess 6:64–74CrossRef
Zurück zum Zitat Axsen J, Burke A, Kurani K (2008) Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): goals and the state of technology circa 2008. Institute of Transportation Studies, University of California, Davis, UCD-ITS-RR-08-14 Axsen J, Burke A, Kurani K (2008) Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): goals and the state of technology circa 2008. Institute of Transportation Studies, University of California, Davis, UCD-ITS-RR-08-14
Zurück zum Zitat Axsen J, Kurani KS, Burke A (2010) Are batteries ready for plug-in hybrid buyers? Transp Policy 17(3):173–182CrossRef Axsen J, Kurani KS, Burke A (2010) Are batteries ready for plug-in hybrid buyers? Transp Policy 17(3):173–182CrossRef
Zurück zum Zitat Azapagic A, Clift R (1999) Allocation of environmental burdens in multiple-function systems. J Clean Prod 7(2):101–119CrossRef Azapagic A, Clift R (1999) Allocation of environmental burdens in multiple-function systems. J Clean Prod 7(2):101–119CrossRef
Zurück zum Zitat Beer S, Gomez T, Dallinger D, Momber I, Marnay C, Stadler M, Lai J (2012) An economic analysis of used electric vehicle batteries integrated into commercial building microgrids. IEEE Trans Smart Grid 3(1):517–525CrossRef Beer S, Gomez T, Dallinger D, Momber I, Marnay C, Stadler M, Lai J (2012) An economic analysis of used electric vehicle batteries integrated into commercial building microgrids. IEEE Trans Smart Grid 3(1):517–525CrossRef
Zurück zum Zitat Boguski TK, Hunt RG, Franklin WE (1994) General mathematical models for LCI recycling. Resour Conserv Recycl 12(3):147–163CrossRef Boguski TK, Hunt RG, Franklin WE (1994) General mathematical models for LCI recycling. Resour Conserv Recycl 12(3):147–163CrossRef
Zurück zum Zitat Borg M, Paulsen J, Trinius W (2001) Proposal of a method for allocation in building-related environmental LCA based on economic parameters. Int J Life Cycle Assess 6(4):219–230CrossRef Borg M, Paulsen J, Trinius W (2001) Proposal of a method for allocation in building-related environmental LCA based on economic parameters. Int J Life Cycle Assess 6(4):219–230CrossRef
Zurück zum Zitat Burke A (2009) Performance, charging, and second-use considerations for lithium batteries for plug-in electric vehicles. Institute of Transportation Studies, University of California, Davis Burke A (2009) Performance, charging, and second-use considerations for lithium batteries for plug-in electric vehicles. Institute of Transportation Studies, University of California, Davis
Zurück zum Zitat Celik AN, Muneer T, Clarke P (2008) Optimal sizing and life cycle assessment of residential photovoltaic energy systems with battery storage. Prog Photovolt Res Appl 16(1):69–85CrossRef Celik AN, Muneer T, Clarke P (2008) Optimal sizing and life cycle assessment of residential photovoltaic energy systems with battery storage. Prog Photovolt Res Appl 16(1):69–85CrossRef
Zurück zum Zitat Cicconi P, Landi D, Morbidoni A, Germani M (2012) Feasibility analysis of second life applications for Li-ion cells used in electric powertrain using environmental indicators. In: ENERGYCON 2012, IEEE Int Energy Conf Exhib, Florence, Italy, 9–12 September 2012, pp 985–990. Institute of Electrical and Electronics Engineers. doi:10.1109/EnergyCon.2012.6348293 Cicconi P, Landi D, Morbidoni A, Germani M (2012) Feasibility analysis of second life applications for Li-ion cells used in electric powertrain using environmental indicators. In: ENERGYCON 2012, IEEE Int Energy Conf Exhib, Florence, Italy, 9–12 September 2012, pp 985–990. Institute of Electrical and Electronics Engineers. doi:10.​1109/​EnergyCon.​2012.​6348293
Zurück zum Zitat Cready E, Lippert J, Pihl J, Weinstock I, Symons P, Jungst RG (2003) Technical and economic feasibility of applying used EV batteries in stationary applications. SAND2002-4084. Sandia National Laboratories, AlbuquerqueCrossRef Cready E, Lippert J, Pihl J, Weinstock I, Symons P, Jungst RG (2003) Technical and economic feasibility of applying used EV batteries in stationary applications. SAND2002-4084. Sandia National Laboratories, AlbuquerqueCrossRef
Zurück zum Zitat Dunn JB, Gaines L, Barnes M, Sullivan J, Wang MQ (2012) Material and energy flows in materials production, assembly, and end-of-life stages of the life cycle of lithium-ion batteries. ANL/ESD/12-3, Argonne National Laboratory. https://greet.es.anl.gov/publication-lib-lca. Accessed 30 Jul 2015 Dunn JB, Gaines L, Barnes M, Sullivan J, Wang MQ (2012) Material and energy flows in materials production, assembly, and end-of-life stages of the life cycle of lithium-ion batteries. ANL/ESD/12-3, Argonne National Laboratory. https://​greet.​es.​anl.​gov/​publication-lib-lca. Accessed 30 Jul 2015
Zurück zum Zitat ecoinvent Centre (2010) ecoinvent data and reports v.2.2. Swiss Center for Life Cycle Inventories, Dübendorf ecoinvent Centre (2010) ecoinvent data and reports v.2.2. Swiss Center for Life Cycle Inventories, Dübendorf
Zurück zum Zitat Ekvall T, Tillman AM (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2(3):155–162CrossRef Ekvall T, Tillman AM (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2(3):155–162CrossRef
Zurück zum Zitat Ellingsen LAW, Majeau‐Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium‐ion battery vehicle pack. J Ind Ecol 18(1):113–124CrossRef Ellingsen LAW, Majeau‐Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium‐ion battery vehicle pack. J Ind Ecol 18(1):113–124CrossRef
Zurück zum Zitat Genikomsakis KN, Ioakimidis CS, Murillo A, Trifonova A, Simic, D (2013) A Life Cycle Assessment of a Li-ion urban electric vehicle battery. In: EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain, November 17–20, 2013, pp 1–11. Institute of Electrical and Electronics Engineers. doi:10.1109/EVS.2013.6914907 Genikomsakis KN, Ioakimidis CS, Murillo A, Trifonova A, Simic, D (2013) A Life Cycle Assessment of a Li-ion urban electric vehicle battery. In: EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain, November 17–20, 2013, pp 1–11. Institute of Electrical and Electronics Engineers. doi:10.​1109/​EVS.​2013.​6914907
Zurück zum Zitat Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33CrossRef Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33CrossRef
Zurück zum Zitat Han X, Ouyang M, Lu L, Li J (2014) A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity loss estimation. J Power Sources 268:658–669CrossRef Han X, Ouyang M, Lu L, Li J (2014) A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity loss estimation. J Power Sources 268:658–669CrossRef
Zurück zum Zitat Hawkins TR, Singh B, Majeau‐Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef Hawkins TR, Singh B, Majeau‐Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef
Zurück zum Zitat Hein R, Kleindorfer PR, Spinler S (2012) Valuation of electric vehicle batteries in vehicle-to-grid and battery-to-grid systems. Technol Forecast Soc Chang 79(9):1654–1671CrossRef Hein R, Kleindorfer PR, Spinler S (2012) Valuation of electric vehicle batteries in vehicle-to-grid and battery-to-grid systems. Technol Forecast Soc Chang 79(9):1654–1671CrossRef
Zurück zum Zitat Heymans C, Walker SB, Young SB, Fowler M (2014) Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71:22–30CrossRef Heymans C, Walker SB, Young SB, Fowler M (2014) Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71:22–30CrossRef
Zurück zum Zitat Hittman Associates (1980) Life cycle energy analysis of electric vehicle storage batteries. Final report submitted to the US Department of Energy, contract number DE-AC02-79ET25420. doi:10.2172/6655795 Hittman Associates (1980) Life cycle energy analysis of electric vehicle storage batteries. Final report submitted to the US Department of Energy, contract number DE-AC02-79ET25420. doi:10.​2172/​6655795
Zurück zum Zitat Hoyer C, Kieckhäfer K, Spengler TS (2011) A strategic framework for the design of recycling networks for lithium–ion batteries from electric vehicles. In: Hesselbach J, Herrmann C (eds) Glocalized solutions for sustainability in manufacturing. Springer, Heidelberg, pp 79–84CrossRef Hoyer C, Kieckhäfer K, Spengler TS (2011) A strategic framework for the design of recycling networks for lithium–ion batteries from electric vehicles. In: Hesselbach J, Herrmann C (eds) Glocalized solutions for sustainability in manufacturing. Springer, Heidelberg, pp 79–84CrossRef
Zurück zum Zitat Idjis H, Attias D, Bocquet JC, Richet S (2013) Designing a sustainable recycling network for batteries from electric vehicles. Development and optimization of scenarios. In: Camarinha-Matos LM, Scherer RJ (eds) Collaborative Systems for Reindustrialization. Springer Berlin Heidelberg. Springer, Heidelberg, pp 609–618CrossRef Idjis H, Attias D, Bocquet JC, Richet S (2013) Designing a sustainable recycling network for batteries from electric vehicles. Development and optimization of scenarios. In: Camarinha-Matos LM, Scherer RJ (eds) Collaborative Systems for Reindustrialization. Springer Berlin Heidelberg. Springer, Heidelberg, pp 609–618CrossRef
Zurück zum Zitat International Organization for Standardization [ISO] (2006) Environmental management – life cycle assessment – requirements and guidelines. ISO 14044:2006(E), International Standards Organization, Geneva, Switzerland International Organization for Standardization [ISO] (2006) Environmental management – life cycle assessment – requirements and guidelines. ISO 14044:2006(E), International Standards Organization, Geneva, Switzerland
Zurück zum Zitat Ishihara K, Kihira N, Terada N, Iwahori T (2002) Environmental burdens of large lithium-ion batteries developed in a Japanese national project. Central Research Institute of Electric Power Industry, Japan Ishihara K, Kihira N, Terada N, Iwahori T (2002) Environmental burdens of large lithium-ion batteries developed in a Japanese national project. Central Research Institute of Electric Power Industry, Japan
Zurück zum Zitat Karlsson, R (1994). LCA as a guide for the improvement of recycling. In: Huppes G, Schneider F (eds) Proceedings of the European Workshop on Allocation in LCA, CML, Leiden Februray 24–25, 1994, pp 18–28. Society of Environmental Toxicology and Chemistry Karlsson, R (1994). LCA as a guide for the improvement of recycling. In: Huppes G, Schneider F (eds) Proceedings of the European Workshop on Allocation in LCA, CML, Leiden Februray 24–25, 1994, pp 18–28. Society of Environmental Toxicology and Chemistry
Zurück zum Zitat Kim S, Hwang T, Lee KM (1997) Allocation for cascade recycling system. Int J Life Cycle Assess 2(4):217–222CrossRef Kim S, Hwang T, Lee KM (1997) Allocation for cascade recycling system. Int J Life Cycle Assess 2(4):217–222CrossRef
Zurück zum Zitat Klöpffer W (1996) Allocation rule for open-loop recycling in life cycle assessment. Int J Life Cycle Assess 1(1):27–31CrossRef Klöpffer W (1996) Allocation rule for open-loop recycling in life cycle assessment. Int J Life Cycle Assess 1(1):27–31CrossRef
Zurück zum Zitat Knoepfel I (1994) Allocation of environmental burdens in life-cycle analysis according to a two-stage procedure. In: Huppes G, Schneider F (eds) Proceedings of the European Workshop on Allocation in LCA, CML, Leiden , Februray 24–25, 1994, pp 133–139. Society of Environmental Toxicology and Chemistry Knoepfel I (1994) Allocation of environmental burdens in life-cycle analysis according to a two-stage procedure. In: Huppes G, Schneider F (eds) Proceedings of the European Workshop on Allocation in LCA, CML, Leiden , Februray 24–25, 1994, pp 133–139. Society of Environmental Toxicology and Chemistry
Zurück zum Zitat Krieger EM, Cannarella J, Arnold CB (2013) A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60:492–500CrossRef Krieger EM, Cannarella J, Arnold CB (2013) A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60:492–500CrossRef
Zurück zum Zitat Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef
Zurück zum Zitat Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef
Zurück zum Zitat Marano V, Onori S, Guezennec Y, Rizzoni G, Madella N (2009) Lithium-ion batteries life estimation for plug in hybrid electric vehicle. In: IEEE Veh Power Propuls Conf, Dearborn, MI, September 7–10, 2009, pp 536–543. Institute of Electrical and Electronics Engineers. doi:10.1109/VPPC.2009.5289803 Marano V, Onori S, Guezennec Y, Rizzoni G, Madella N (2009) Lithium-ion batteries life estimation for plug in hybrid electric vehicle. In: IEEE Veh Power Propuls Conf, Dearborn, MI, September 7–10, 2009, pp 536–543. Institute of Electrical and Electronics Engineers. doi:10.​1109/​VPPC.​2009.​5289803
Zurück zum Zitat Matheys J, Autenboer W (2005) SUBAT: sustainable batteries work package 5: overall assessment final public report. Vrije Universiteit Brussel, Brussels Matheys J, Autenboer W (2005) SUBAT: sustainable batteries work package 5: overall assessment final public report. Vrije Universiteit Brussel, Brussels
Zurück zum Zitat Matheys J, Timmermans JM, Van Mierlo J, Meyer S (2009) Comparison of the environmental impact of five electric vehicle battery technologies using LCA. Int J Sustain Manuf 1(3):318–329CrossRef Matheys J, Timmermans JM, Van Mierlo J, Meyer S (2009) Comparison of the environmental impact of five electric vehicle battery technologies using LCA. Int J Sustain Manuf 1(3):318–329CrossRef
Zurück zum Zitat Mudgal S, Guern Y, Tinetti B, Chanoine A, Pahal S, Witte F (2011) Comparative Life-Cycle Assessment of nickel-cadmium (NiCd) batteries used in Cordless Power Tools (CPTs) vs. their alternatives nickel-metal hybride (NiMH) and lithium-ion (Li-ion) batteries. Final Report of European Commission. Bio Intelligence Service, Paris, France. http://ec.europa.eu/environment/waste/batteries/pdf/report_12.pdf. Accessed 30 Jul 2015 Mudgal S, Guern Y, Tinetti B, Chanoine A, Pahal S, Witte F (2011) Comparative Life-Cycle Assessment of nickel-cadmium (NiCd) batteries used in Cordless Power Tools (CPTs) vs. their alternatives nickel-metal hybride (NiMH) and lithium-ion (Li-ion) batteries. Final Report of European Commission. Bio Intelligence Service, Paris, France. http://​ec.​europa.​eu/​environment/​waste/​batteries/​pdf/​report_​12.​pdf. Accessed 30 Jul 2015
Zurück zum Zitat Narula C, Martinez R, Onar O, Starke M, Andrews G (2011) Economic analysis of deploying used batteries in power systems. Oak Ridge National Laboratory, Oak Ridge Narula C, Martinez R, Onar O, Starke M, Andrews G (2011) Economic analysis of deploying used batteries in power systems. Oak Ridge National Laboratory, Oak Ridge
Zurück zum Zitat Nenadic NG, Bussey HE, Ardis PA, Thurston MG (2014) Estimation of state-of-charge and capacity of used lithium-ion cells. Int J Progn Health Manag 5:12 Nenadic NG, Bussey HE, Ardis PA, Thurston MG (2014) Estimation of state-of-charge and capacity of used lithium-ion cells. Int J Progn Health Manag 5:12
Zurück zum Zitat Neubauer J, Pesaran A (2011) The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. J Power Sources 196(23):10351–10358CrossRef Neubauer J, Pesaran A (2011) The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. J Power Sources 196(23):10351–10358CrossRef
Zurück zum Zitat Neubauer JS, Pesaran A, Williams B, Ferry M, Eyer J (2012) A techno-economic analysis of PEV battery second use: repurposed-battery selling price and commercial and industrial end-user value. SAE Technical Paper (No. 2012-01-0349). SAE International. http://www.nrel.gov/docs/fy12osti/53799.pdf. Accessed 30 Jul 2015 Neubauer JS, Pesaran A, Williams B, Ferry M, Eyer J (2012) A techno-economic analysis of PEV battery second use: repurposed-battery selling price and commercial and industrial end-user value. SAE Technical Paper (No. 2012-01-0349). SAE International. http://​www.​nrel.​gov/​docs/​fy12osti/​53799.​pdf. Accessed 30 Jul 2015
Zurück zum Zitat Newell SA, Field FR (1998) Explicit accounting methods for recycling in LCI. Resour Conserv Recycl 22(1):31–45CrossRef Newell SA, Field FR (1998) Explicit accounting methods for recycling in LCI. Resour Conserv Recycl 22(1):31–45CrossRef
Zurück zum Zitat Nicholson AL, Olivetti EA, Gregory JR, Field FR, Kirchain RE (2009) End-of-life LCA allocation methods: open loop recycling impacts on robustness of material selection decisions. In: 2009 IEEE International Symposium on Sustainable Systems and Technology, Phoenix, AZ, May 18–20, 2009, pp 1–6. Institute of Electrical and Electronics Engineers. doi:10.1109/ISSST.2009.5156769 Nicholson AL, Olivetti EA, Gregory JR, Field FR, Kirchain RE (2009) End-of-life LCA allocation methods: open loop recycling impacts on robustness of material selection decisions. In: 2009 IEEE International Symposium on Sustainable Systems and Technology, Phoenix, AZ, May 18–20, 2009, pp 1–6. Institute of Electrical and Electronics Engineers. doi:10.​1109/​ISSST.​2009.​5156769
Zurück zum Zitat Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1):101–106CrossRef Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1):101–106CrossRef
Zurück zum Zitat Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44(17):6550–6556CrossRef Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44(17):6550–6556CrossRef
Zurück zum Zitat Parker CD (2001) Lead–acid battery energy-storage systems for electricity supply networks. J Power Sources 100(1):18–28CrossRef Parker CD (2001) Lead–acid battery energy-storage systems for electricity supply networks. J Power Sources 100(1):18–28CrossRef
Zurück zum Zitat Peterson SB, Apt J, Whitacre JF (2010) Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. J Power Sources 195:2385–2392CrossRef Peterson SB, Apt J, Whitacre JF (2010) Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. J Power Sources 195:2385–2392CrossRef
Zurück zum Zitat Rantik M (1999) Life cycle assessment of five batteries for electric vehicles under different charging regimes. KFB-Meddelande, vol 28. Chalmers Univ. of Technology, Göteborg Rantik M (1999) Life cycle assessment of five batteries for electric vehicles under different charging regimes. KFB-Meddelande, vol 28. Chalmers Univ. of Technology, Göteborg
Zurück zum Zitat Richa K, Babbitt CW, Gaustad G, Wang X (2014) A future perspective on lithium-ion battery waste flows from electric vehicles. Resour Conserv Recycl 83:63–76CrossRef Richa K, Babbitt CW, Gaustad G, Wang X (2014) A future perspective on lithium-ion battery waste flows from electric vehicles. Resour Conserv Recycl 83:63–76CrossRef
Zurück zum Zitat Ritchie A, Howard W (2006) Recent developments and likely advances in lithium-ion batteries. J Power Sources 162(2):809–812CrossRef Ritchie A, Howard W (2006) Recent developments and likely advances in lithium-ion batteries. J Power Sources 162(2):809–812CrossRef
Zurück zum Zitat Rydberg T (1995) Cascade accounting in life cycle assessment applied to polymer recycling. Polym Recycl 1(4):233–241 Rydberg T (1995) Cascade accounting in life cycle assessment applied to polymer recycling. Polym Recycl 1(4):233–241
Zurück zum Zitat Rydh CJ (1999) Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J Power Sources 80(1):21–29CrossRef Rydh CJ (1999) Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J Power Sources 80(1):21–29CrossRef
Zurück zum Zitat Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Convers Manag 46(11):1957–1979CrossRef Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Convers Manag 46(11):1957–1979CrossRef
Zurück zum Zitat Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176CrossRef Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176CrossRef
Zurück zum Zitat Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Ann Rev Chem Biomol Eng 2:503–527CrossRef Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Ann Rev Chem Biomol Eng 2:503–527CrossRef
Zurück zum Zitat Streicher-Porte M, Marthaler C, Böni H, Schluep M, Camacho A, Hilty LM (2009) One laptop per child, local refurbishment or overseas donations? Sustainability assessment of computer supply scenarios for schools in Colombia. J Environ Manag 90(11):3498–3511CrossRef Streicher-Porte M, Marthaler C, Böni H, Schluep M, Camacho A, Hilty LM (2009) One laptop per child, local refurbishment or overseas donations? Sustainability assessment of computer supply scenarios for schools in Colombia. J Environ Manag 90(11):3498–3511CrossRef
Zurück zum Zitat Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manag 58:134–148CrossRef Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manag 58:134–148CrossRef
Zurück zum Zitat U.S. EPA (2012) Lithium-ion batteries and nanotechnology for electric vehicles: a life cycle assessment. EPA 744-R-12-001. U.S. EPA, Washington DC U.S. EPA (2012) Lithium-ion batteries and nanotechnology for electric vehicles: a life cycle assessment. EPA 744-R-12-001. U.S. EPA, Washington DC
Zurück zum Zitat Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sources 162(2):913–919CrossRef Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sources 162(2):913–919CrossRef
Zurück zum Zitat Wang X, Gaustad G, Babbitt CW, Bailey C, Ganter MJ, Landi BJ (2014a) Economic and environmental characterization of an evolving Li-ion battery waste stream. J Environ Manag 135:126–134CrossRef Wang X, Gaustad G, Babbitt CW, Bailey C, Ganter MJ, Landi BJ (2014a) Economic and environmental characterization of an evolving Li-ion battery waste stream. J Environ Manag 135:126–134CrossRef
Zurück zum Zitat Wang X, Gaustad G, Babbitt CW, Richa K (2014b) Economies of scale for future lithium-ion battery recycling infrastructure. Resour Conserv Recycl 83:53–62CrossRef Wang X, Gaustad G, Babbitt CW, Richa K (2014b) Economies of scale for future lithium-ion battery recycling infrastructure. Resour Conserv Recycl 83:53–62CrossRef
Zurück zum Zitat Wellbeloved DB, Craven PM, Wandby JW (1990) Manganese and manganese alloys. In: Elvers B, Hawkins S, Schulz G (eds) Ullmann’s encyclopedia of industrial chemistry, vol A16, 5th edn. VCH Verlagsgesellschaft, Weinheim Wellbeloved DB, Craven PM, Wandby JW (1990) Manganese and manganese alloys. In: Elvers B, Hawkins S, Schulz G (eds) Ullmann’s encyclopedia of industrial chemistry, vol A16, 5th edn. VCH Verlagsgesellschaft, Weinheim
Zurück zum Zitat Werner F, Althaus HJ, Richter K, Scholz RW (2007) Post-consumer waste wood in attributive product LCA. Int J Life Cycle Assess 12(3):160–172 Werner F, Althaus HJ, Richter K, Scholz RW (2007) Post-consumer waste wood in attributive product LCA. Int J Life Cycle Assess 12(3):160–172
Zurück zum Zitat Williams B (2011) Plug-in-vehicle battery second life: the effect of post-vehicle, distributed-grid energy storage value on battery-lease payments. Transportation Sustainability Research Center, University of California, Berkeley Williams B (2011) Plug-in-vehicle battery second life: the effect of post-vehicle, distributed-grid energy storage value on battery-lease payments. Transportation Sustainability Research Center, University of California, Berkeley
Zurück zum Zitat Williams BD, Lipman TE (2010) Strategy for overcoming cost hurdles of plug-in-hybrid battery in California. Transp Res Record J Transp Res Board 2191(1):59–66CrossRef Williams BD, Lipman TE (2010) Strategy for overcoming cost hurdles of plug-in-hybrid battery in California. Transp Res Record J Transp Res Board 2191(1):59–66CrossRef
Zurück zum Zitat Xu T, Wang W, Gordin ML, Wang D, Choi D (2010) Lithium-ion batteries for stationary energy storage. J Miner Metals Mater Soc 62(9):24–30CrossRef Xu T, Wang W, Gordin ML, Wang D, Choi D (2010) Lithium-ion batteries for stationary energy storage. J Miner Metals Mater Soc 62(9):24–30CrossRef
Zurück zum Zitat Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—critical issues. J Clean Prod 18(15):1519–1529CrossRef Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—critical issues. J Clean Prod 18(15):1519–1529CrossRef
Metadaten
Titel
Environmental trade-offs across cascading lithium-ion battery life cycles
verfasst von
Kirti Richa
Callie W. Babbitt
Nenad G. Nenadic
Gabrielle Gaustad
Publikationsdatum
11.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0942-3

Weitere Artikel der Ausgabe 1/2017

The International Journal of Life Cycle Assessment 1/2017 Zur Ausgabe

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Is there a resource constraint related to lithium ion batteries in cars?

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Preface