Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 3/2017

23.06.2016 | LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS

Life cycle assessment of hydrogen energy systems: a review of methodological choices

verfasst von: Antonio Valente, Diego Iribarren, Javier Dufour

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

As a first step towards a consistent framework for both individual and comparative life cycle assessment (LCA) of hydrogen energy systems, this work performs a thorough literature review on the methodological choices made in LCA studies of these energy systems. Choices affecting the LCA stages “goal and scope definition”, “life cycle inventory analysis” (LCI) and “life cycle impact assessment” (LCIA) are targeted.

Methods

This review considers 97 scientific papers published until December 2015, in which 509 original case studies of hydrogen energy systems are found. Based on the hydrogen production process, these case studies are classified into three technological categories: thermochemical, electrochemical and biological. A subdivision based on the scope of the studies is also applied, thus distinguishing case studies addressing hydrogen production only, hydrogen production and use in mobility and hydrogen production and use for power generation.

Results and discussion

Most of the hydrogen energy systems apply cradle/gate-to-gate boundaries, while cradle/gate-to-grave boundaries are found mainly for hydrogen use in mobility. The functional unit is usually mass- or energy-based for cradle/gate-to-gate studies and travelled distance for cradle/gate-to-grave studies. Multifunctionality is addressed mainly through system expansion and, to a lesser extent, physical allocation. Regarding LCI, scientific literature and life cycle databases are the main data sources for both background and foreground processes. Regarding LCIA, the most common impact categories evaluated are global warming and energy consumption through the IPCC and VDI methods, respectively. The remaining indicators are often evaluated using the CML family methods. The level of agreement of these trends with the available FC-HyGuide guidelines for LCA of hydrogen energy systems depends on the specific methodological aspect considered.

Conclusions

This review on LCA of hydrogen energy systems succeeded in finding relevant trends in methodological choices, especially regarding the frequent use of system expansion and secondary data under production-oriented attributional approaches. These trends are expected to facilitate methodological decision making in future LCA studies of hydrogen energy systems. Furthermore, this review may provide a basis for the definition of a methodological framework to harmonise the LCA results of hydrogen available so far in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmadi P, Kjeang E (2015) Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces. Int J Hydrog Energy 40:12905–12917CrossRef Ahmadi P, Kjeang E (2015) Comparative life cycle assessment of hydrogen fuel cell passenger vehicles in different Canadian provinces. Int J Hydrog Energy 40:12905–12917CrossRef
Zurück zum Zitat Authayanun S, Suwanmanee U, Arpornwichanop A (2015) Enhancement of dilute bio-ethanol steam reforming for a proton exchange membrane fuel cell system by using methane as co-reactant: performance and life cycle assessment. Int J Hydrog Energy 40:12144–12153CrossRef Authayanun S, Suwanmanee U, Arpornwichanop A (2015) Enhancement of dilute bio-ethanol steam reforming for a proton exchange membrane fuel cell system by using methane as co-reactant: performance and life cycle assessment. Int J Hydrog Energy 40:12144–12153CrossRef
Zurück zum Zitat Baptista P, Ribau J, Bravo J et al (2011) Fuel cell hybrid taxi life cycle analysis. Energy Policy 39:4683–4691CrossRef Baptista P, Ribau J, Bravo J et al (2011) Fuel cell hybrid taxi life cycle analysis. Energy Policy 39:4683–4691CrossRef
Zurück zum Zitat Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111CrossRef Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111CrossRef
Zurück zum Zitat Bauer C, Hofer J, Althaus HJ et al (2015) The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl Energy 157:1–13CrossRef Bauer C, Hofer J, Althaus HJ et al (2015) The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl Energy 157:1–13CrossRef
Zurück zum Zitat Bhandari R, Trudewind CA, Zapp P (2014) Life cycle assessment of hydrogen production via electrolysis—a review. J Clean Prod 85:151–163CrossRef Bhandari R, Trudewind CA, Zapp P (2014) Life cycle assessment of hydrogen production via electrolysis—a review. J Clean Prod 85:151–163CrossRef
Zurück zum Zitat Biswas WK, Thompson BC, Islam MN (2013) Environmental life cycle feasibility assessment of hydrogen as an automotive fuel in Western Australia. Int J Hydrog Energy 38:246–254CrossRef Biswas WK, Thompson BC, Islam MN (2013) Environmental life cycle feasibility assessment of hydrogen as an automotive fuel in Western Australia. Int J Hydrog Energy 38:246–254CrossRef
Zurück zum Zitat Bouvart F, Prieur A (2009) Comparison of life cycle GHG emissions and energy consumption of combined electricity and H2 production pathways with CCS: selection of technologies with natural gas, coal and lignite as fuel for the European HYPOGEN Programme. Energy Procedia 1:3779–3786CrossRef Bouvart F, Prieur A (2009) Comparison of life cycle GHG emissions and energy consumption of combined electricity and H2 production pathways with CCS: selection of technologies with natural gas, coal and lignite as fuel for the European HYPOGEN Programme. Energy Procedia 1:3779–3786CrossRef
Zurück zum Zitat Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 36:2202–2214CrossRef Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 36:2202–2214CrossRef
Zurück zum Zitat Briguglio N, Andaloro L, Ferraro M et al (2010) Renewable energy for hydrogen production and sustainable urban mobility. Int J Hydrog Energy 35:9996–10003CrossRef Briguglio N, Andaloro L, Ferraro M et al (2010) Renewable energy for hydrogen production and sustainable urban mobility. Int J Hydrog Energy 35:9996–10003CrossRef
Zurück zum Zitat British Petroleum (2016) BP Energy Outlook 2016 edition. Outlook to 2035. BP, London British Petroleum (2016) BP Energy Outlook 2016 edition. Outlook to 2035. BP, London
Zurück zum Zitat Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrog Energy 37:2071–2080CrossRef Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrog Energy 37:2071–2080CrossRef
Zurück zum Zitat Chang L, Li Z, Gao D et al (2007) Pathways for hydrogen infrastructure development in China: integrated assessment for vehicle fuels and a case study of Beijing. Energy 32:2023–2037CrossRef Chang L, Li Z, Gao D et al (2007) Pathways for hydrogen infrastructure development in China: integrated assessment for vehicle fuels and a case study of Beijing. Energy 32:2023–2037CrossRef
Zurück zum Zitat Chen IC, Fukushima Y, Kikuchi Y, Hirao M (2012a) A graphical representation for consequential life cycle assessment of future technologies. Part 1: methodological framework. Int J Life Cycle Assess 17:119–125CrossRef Chen IC, Fukushima Y, Kikuchi Y, Hirao M (2012a) A graphical representation for consequential life cycle assessment of future technologies. Part 1: methodological framework. Int J Life Cycle Assess 17:119–125CrossRef
Zurück zum Zitat Chen IC, Fukushima Y, Kikuchi Y, Hirao M (2012b) A graphical representation for consequential life cycle assessment of future technologies-Part 2: two case studies on choice of technologies and evaluation of technology improvements. Int J Life Cycle Assess 17:270–276CrossRef Chen IC, Fukushima Y, Kikuchi Y, Hirao M (2012b) A graphical representation for consequential life cycle assessment of future technologies-Part 2: two case studies on choice of technologies and evaluation of technology improvements. Int J Life Cycle Assess 17:270–276CrossRef
Zurück zum Zitat Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971CrossRef Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971CrossRef
Zurück zum Zitat Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111CrossRef Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111CrossRef
Zurück zum Zitat Dincer I, Zamfirescu C (2012) Sustainable hydrogen production options and the role of IAHE. Int J Hydrog Energy 37:16266–16286CrossRef Dincer I, Zamfirescu C (2012) Sustainable hydrogen production options and the role of IAHE. Int J Hydrog Energy 37:16266–16286CrossRef
Zurück zum Zitat Djomo SN, Blumberga D (2011) Comparative life cycle assessment of three biohydrogen pathways. Bioresour Technol 102:2684–2694CrossRef Djomo SN, Blumberga D (2011) Comparative life cycle assessment of three biohydrogen pathways. Bioresour Technol 102:2684–2694CrossRef
Zurück zum Zitat Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced from potato steam peels. Int J Hydrog Energy 33:3067–3072CrossRef Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced from potato steam peels. Int J Hydrog Energy 33:3067–3072CrossRef
Zurück zum Zitat Dufour J, Serrano DP, Gálvez JL et al (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrog Energy 34:1370–1376CrossRef Dufour J, Serrano DP, Gálvez JL et al (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrog Energy 34:1370–1376CrossRef
Zurück zum Zitat Dufour J, Gálvez JL, Serrano DP et al (2010) Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts. Int J Hydrog Energy 35:1205–1212CrossRef Dufour J, Gálvez JL, Serrano DP et al (2010) Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts. Int J Hydrog Energy 35:1205–1212CrossRef
Zurück zum Zitat Dufour J, Serrano DP, Gálvez JL et al (2012) Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. Int J Hydrog Energy 37:1173–1183CrossRef Dufour J, Serrano DP, Gálvez JL et al (2012) Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. Int J Hydrog Energy 37:1173–1183CrossRef
Zurück zum Zitat Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrog Energy 27:235–264CrossRef Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrog Energy 27:235–264CrossRef
Zurück zum Zitat Ferreira AF, Ortigueira J, Alves L et al (2013) Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Bioresour Technol 144:156–164CrossRef Ferreira AF, Ortigueira J, Alves L et al (2013) Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Bioresour Technol 144:156–164CrossRef
Zurück zum Zitat Galera S, Gutiérrez Ortiz FJ (2015) Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol. Energy Convers Manag 96:637–645CrossRef Galera S, Gutiérrez Ortiz FJ (2015) Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol. Energy Convers Manag 96:637–645CrossRef
Zurück zum Zitat García Sánchez JA, López Martínez JM, Lumbreras Martín J et al (2013) Impact of Spanish electricity mix, over the period 2008–2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System. Energy Convers Manag 74:332–343CrossRef García Sánchez JA, López Martínez JM, Lumbreras Martín J et al (2013) Impact of Spanish electricity mix, over the period 2008–2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System. Energy Convers Manag 74:332–343CrossRef
Zurück zum Zitat Giraldi MR, François JL, Castro-Uriegas D (2012) Life cycle greenhouse gases emission analysis of hydrogen production from S-I thermochemical process coupled to a high temperature nuclear reactor. Int J Hydrog Energy 37:13933–13942CrossRef Giraldi MR, François JL, Castro-Uriegas D (2012) Life cycle greenhouse gases emission analysis of hydrogen production from S-I thermochemical process coupled to a high temperature nuclear reactor. Int J Hydrog Energy 37:13933–13942CrossRef
Zurück zum Zitat Giraldi MR, François JL, Castro-Uriegas D (2015) Life cycle assessment of hydrogen production from a high temperature electrolysis process coupled to a high temperature gas nuclear reactor. Int J Hydrog Energy 40:4019–4033CrossRef Giraldi MR, François JL, Castro-Uriegas D (2015) Life cycle assessment of hydrogen production from a high temperature electrolysis process coupled to a high temperature gas nuclear reactor. Int J Hydrog Energy 40:4019–4033CrossRef
Zurück zum Zitat Granovskii M, Dincer I, Rosen MA (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrog Energy 31:337–352CrossRef Granovskii M, Dincer I, Rosen MA (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrog Energy 31:337–352CrossRef
Zurück zum Zitat Granovskii M, Dincer I, Rosen MA (2007) Exergetic life cycle assessment of hydrogen production from renewables. J Power Sources 167:461–471CrossRef Granovskii M, Dincer I, Rosen MA (2007) Exergetic life cycle assessment of hydrogen production from renewables. J Power Sources 167:461–471CrossRef
Zurück zum Zitat Guinée JB, Heijungs R, Huppes G et al (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45:90–96CrossRef Guinée JB, Heijungs R, Huppes G et al (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45:90–96CrossRef
Zurück zum Zitat Hacatoglu K, Rosen MA, Dincer I (2012) Comparative life cycle assessment of hydrogen and other selected fuels. Int J Hydrog Energy 37:9933–9940CrossRef Hacatoglu K, Rosen MA, Dincer I (2012) Comparative life cycle assessment of hydrogen and other selected fuels. Int J Hydrog Energy 37:9933–9940CrossRef
Zurück zum Zitat Hajjaji N (2014) Thermodynamic investigation and environment impact assessment of hydrogen production from steam reforming of poultry tallow. Energy Convers Manag 79:171–179CrossRef Hajjaji N (2014) Thermodynamic investigation and environment impact assessment of hydrogen production from steam reforming of poultry tallow. Energy Convers Manag 79:171–179CrossRef
Zurück zum Zitat Hajjaji N, Pons MN, Renaudin V, Houas A (2013) Comparative life cycle assessment of eight alternatives for hydrogen production from renewable and fossil feedstock. J Clean Prod 44:177–189CrossRef Hajjaji N, Pons MN, Renaudin V, Houas A (2013) Comparative life cycle assessment of eight alternatives for hydrogen production from renewable and fossil feedstock. J Clean Prod 44:177–189CrossRef
Zurück zum Zitat Heracleous E (2011) Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines. Int J Hydrog Energy 36:11501–11511CrossRef Heracleous E (2011) Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines. Int J Hydrog Energy 36:11501–11511CrossRef
Zurück zum Zitat Hwang JJ (2013) Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renew Sustain Energy Rev 19:220–229CrossRef Hwang JJ (2013) Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renew Sustain Energy Rev 19:220–229CrossRef
Zurück zum Zitat Hwang JJ, Chang WR (2010) Life-cycle analysis of greenhouse gas emission and energy efficiency of hydrogen fuel cell scooters. Int J Hydrog Energy 35:11947–11956CrossRef Hwang JJ, Chang WR (2010) Life-cycle analysis of greenhouse gas emission and energy efficiency of hydrogen fuel cell scooters. Int J Hydrog Energy 35:11947–11956CrossRef
Zurück zum Zitat International Energy Agency (2014) Energy Technology Perspectives 2014. IEA, Paris International Energy Agency (2014) Energy Technology Perspectives 2014. IEA, Paris
Zurück zum Zitat International Energy Agency (2015) Technology Roadmap – Hydrogen and Fuel Cells. IEA, Paris International Energy Agency (2015) Technology Roadmap – Hydrogen and Fuel Cells. IEA, Paris
Zurück zum Zitat Iribarren D, Susmozas A, Petrakopoulou F, Dufour J (2014) Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J Clean Prod 69:165–175CrossRef Iribarren D, Susmozas A, Petrakopoulou F, Dufour J (2014) Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J Clean Prod 69:165–175CrossRef
Zurück zum Zitat Iribarren D, Martín-Gamboa M, Manzano J, Dufour J (2016) Assessing the social acceptance of hydrogen for transportation in Spain: an unintentional focus on target population for a potential hydrogen economy. Int J Hydrog Energy 41:5203–5208CrossRef Iribarren D, Martín-Gamboa M, Manzano J, Dufour J (2016) Assessing the social acceptance of hydrogen for transportation in Spain: an unintentional focus on target population for a potential hydrogen economy. Int J Hydrog Energy 41:5203–5208CrossRef
Zurück zum Zitat ISO (2006a) ISO 14040:2006 Environmental management—Life Cycle Assessment—Principles and framework. International Organization for Standardization, Geneva ISO (2006a) ISO 14040:2006 Environmental management—Life Cycle Assessment—Principles and framework. International Organization for Standardization, Geneva
Zurück zum Zitat ISO (2006b) ISO 14044:2006 Environmental management—Life Cycle Assessment—Requirements and guidelines. International Organization for Standardization, Geneva ISO (2006b) ISO 14044:2006 Environmental management—Life Cycle Assessment—Requirements and guidelines. International Organization for Standardization, Geneva
Zurück zum Zitat JRC (2010) European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data system (ILCD) Handbook – General Guide for Life Cycle Assessment – Detailed guidance. Publications Office of the European Union, Luxembourg JRC (2010) European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data system (ILCD) Handbook – General Guide for Life Cycle Assessment – Detailed guidance. Publications Office of the European Union, Luxembourg
Zurück zum Zitat Kalinci Y, Hepbasli A, Dincer I (2012) Life cycle assessment of hydrogen production from biomass gasification systems. Int J Hydrog Energy 37:14026–14039CrossRef Kalinci Y, Hepbasli A, Dincer I (2012) Life cycle assessment of hydrogen production from biomass gasification systems. Int J Hydrog Energy 37:14026–14039CrossRef
Zurück zum Zitat Khan FI, Hawboldt K, Iqbal MT (2004) Life Cycle Analysis of wind–fuel cell integrated system. Renew Energy 30:157–177CrossRef Khan FI, Hawboldt K, Iqbal MT (2004) Life Cycle Analysis of wind–fuel cell integrated system. Renew Energy 30:157–177CrossRef
Zurück zum Zitat Koj JC, Schreiber A, Zapp P, Marcuello P (2015) Life Cycle Assessment of improved high pressure alkaline electrolysis. Energy Procedia 75:2871–2877CrossRef Koj JC, Schreiber A, Zapp P, Marcuello P (2015) Life Cycle Assessment of improved high pressure alkaline electrolysis. Energy Procedia 75:2871–2877CrossRef
Zurück zum Zitat Koroneos C (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrog Energy 29:1443–1450CrossRef Koroneos C (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrog Energy 29:1443–1450CrossRef
Zurück zum Zitat Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2005) Advantages of the use of hydrogen fuel as compared to kerosene. Resour Conserv Recycl 44:99–113CrossRef Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2005) Advantages of the use of hydrogen fuel as compared to kerosene. Resour Conserv Recycl 44:99–113CrossRef
Zurück zum Zitat Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification—a life cycle assessment approach. Chem Eng Process 47:1267–1274CrossRef Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification—a life cycle assessment approach. Chem Eng Process 47:1267–1274CrossRef
Zurück zum Zitat Lattin WC, Utgikar VP (2009) Global warming potential of the sulfur-iodine process using life cycle assessment methodology. Int J Hydrog Energy 34:737–744CrossRef Lattin WC, Utgikar VP (2009) Global warming potential of the sulfur-iodine process using life cycle assessment methodology. Int J Hydrog Energy 34:737–744CrossRef
Zurück zum Zitat Lee JY, Yu MS, Cha KH et al (2009) A study on the environmental aspects of hydrogen pathways in Korea. Int J Hydrog Energy 34:8455–8467CrossRef Lee JY, Yu MS, Cha KH et al (2009) A study on the environmental aspects of hydrogen pathways in Korea. Int J Hydrog Energy 34:8455–8467CrossRef
Zurück zum Zitat Lee JY, An S, Cha KH, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrog Energy 35:2213–2225CrossRef Lee JY, An S, Cha KH, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrog Energy 35:2213–2225CrossRef
Zurück zum Zitat Lombardi L, Carnevale E, Corti A (2011) Life cycle assessment of different hypotheses of hydrogen production for vehicle fuel cells fuelling. Int J Energy Environ Eng 2:63–78 Lombardi L, Carnevale E, Corti A (2011) Life cycle assessment of different hypotheses of hydrogen production for vehicle fuel cells fuelling. Int J Energy Environ Eng 2:63–78
Zurück zum Zitat Lozanovski A, Schuller O, Faltenbacher M (2011) Guidance document for performing LCA on hydrogen production systems. FCH JU, Brussels Lozanovski A, Schuller O, Faltenbacher M (2011) Guidance document for performing LCA on hydrogen production systems. FCH JU, Brussels
Zurück zum Zitat Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:1–6CrossRef Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:1–6CrossRef
Zurück zum Zitat Lucas A, Neto RC, Silva CA (2012) Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector. Int J Hydrog Energy 37:10973–10985CrossRef Lucas A, Neto RC, Silva CA (2012) Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector. Int J Hydrog Energy 37:10973–10985CrossRef
Zurück zum Zitat Lucas A, Neto RC, Silva CA (2013) Energy supply infrastructure LCA model for electric and hydrogen transportation systems. Energy 56:70–80CrossRef Lucas A, Neto RC, Silva CA (2013) Energy supply infrastructure LCA model for electric and hydrogen transportation systems. Energy 56:70–80CrossRef
Zurück zum Zitat Lunghi P, Bove R, Desideri U (2004) Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies. J Power Sources 131:120–126CrossRef Lunghi P, Bove R, Desideri U (2004) Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies. J Power Sources 131:120–126CrossRef
Zurück zum Zitat Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33:279–286CrossRef Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33:279–286CrossRef
Zurück zum Zitat Marchetti C (2005) On decarbonization: historically and perspectively. International Institute for Applied Systems Analysis, Laxenburg Marchetti C (2005) On decarbonization: historically and perspectively. International Institute for Applied Systems Analysis, Laxenburg
Zurück zum Zitat Marquevich M, Sonnemann GW, Castells F, Montané D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRef Marquevich M, Sonnemann GW, Castells F, Montané D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRef
Zurück zum Zitat Martín-Gamboa M, Iribarren D, Susmozas A, Dufour J (2016) Delving into sensible measures to enhance the environmental performance of biohydrogen: a quantitative approach based on process simulation, life cycle assessment and data envelopment analysis. Bioresour Technol 214:376–385CrossRef Martín-Gamboa M, Iribarren D, Susmozas A, Dufour J (2016) Delving into sensible measures to enhance the environmental performance of biohydrogen: a quantitative approach based on process simulation, life cycle assessment and data envelopment analysis. Bioresour Technol 214:376–385CrossRef
Zurück zum Zitat Masoni P, Zamagni A (2011) Guidance document for performing LCA on fuel cells. FCH JU, Brussels Masoni P, Zamagni A (2011) Guidance document for performing LCA on fuel cells. FCH JU, Brussels
Zurück zum Zitat Miotti M, Hofer J, Bauer C (2016) Integrated environmental and economic assessment of current and future fuel cell vehicles. Int J Life Cycle Assess. doi:10.1007/s11367-015-0986-4 Miotti M, Hofer J, Bauer C (2016) Integrated environmental and economic assessment of current and future fuel cell vehicles. Int J Life Cycle Assess. doi:10.​1007/​s11367-015-0986-4
Zurück zum Zitat Moreno J, Dufour J (2013) Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int J Hydrog Energy 38:7616–7622CrossRef Moreno J, Dufour J (2013) Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int J Hydrog Energy 38:7616–7622CrossRef
Zurück zum Zitat Mori M, Jensterle M, Mržljak T, Drobnič B (2014) Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy. Int J Life Cycle Assess 19:1810–1822CrossRef Mori M, Jensterle M, Mržljak T, Drobnič B (2014) Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy. Int J Life Cycle Assess 19:1810–1822CrossRef
Zurück zum Zitat Muresan M, Cormos CC, Agachi PS (2014) Comparative life cycle analysis for gasification-based hydrogen production systems. J Renew Sustain Energy 6:01313CrossRef Muresan M, Cormos CC, Agachi PS (2014) Comparative life cycle analysis for gasification-based hydrogen production systems. J Renew Sustain Energy 6:01313CrossRef
Zurück zum Zitat Neelis ML, Van der Kooi HJ, Geerlings JJC (2004) Exergetic life cycle analysis of hydrogen production and storage systems for automotive applications. Int J Hydrog Energy 29:537–545CrossRef Neelis ML, Van der Kooi HJ, Geerlings JJC (2004) Exergetic life cycle analysis of hydrogen production and storage systems for automotive applications. Int J Hydrog Energy 29:537–545CrossRef
Zurück zum Zitat NETL (2006) Life-cycle analysis of greenhouse gas emissions for hydrogen fuel production in the United States from LNG and coal. US National Energy Technology Laboratory, Pittsburgh NETL (2006) Life-cycle analysis of greenhouse gas emissions for hydrogen fuel production in the United States from LNG and coal. US National Energy Technology Laboratory, Pittsburgh
Zurück zum Zitat Ochs D, Wukovits W, Ahrer W (2010) Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). J Clean Prod 18:S88–S94CrossRef Ochs D, Wukovits W, Ahrer W (2010) Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). J Clean Prod 18:S88–S94CrossRef
Zurück zum Zitat Oliveira L, Messagie M, Mertens J et al (2015) Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Convers Manag 101:326–335CrossRef Oliveira L, Messagie M, Mertens J et al (2015) Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Convers Manag 101:326–335CrossRef
Zurück zum Zitat Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl Cycle: a parametric study. Int J Hydrog Energy 36:9514–9528CrossRef Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl Cycle: a parametric study. Int J Hydrog Energy 36:9514–9528CrossRef
Zurück zum Zitat Ozbilen A, Dincer I, Rosen MA (2012a) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRef Ozbilen A, Dincer I, Rosen MA (2012a) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRef
Zurück zum Zitat Ozbilen A, Dincer I, Rosen MA (2012b) Exergetic life cycle assessment of a hydrogen production process. Int J Hydrog Energy 37:5665–5675CrossRef Ozbilen A, Dincer I, Rosen MA (2012b) Exergetic life cycle assessment of a hydrogen production process. Int J Hydrog Energy 37:5665–5675CrossRef
Zurück zum Zitat Pacheco R, Ferreira AF, Pinto T et al (2015) The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Convers Manag 89:789–797CrossRef Pacheco R, Ferreira AF, Pinto T et al (2015) The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Convers Manag 89:789–797CrossRef
Zurück zum Zitat Patterson T, Esteves S, Carr S et al (2014) Life cycle assessment of the electrolytic production and utilization of low carbon hydrogen vehicle fuel. Int J Hydrog Energy 39:7190–7201CrossRef Patterson T, Esteves S, Carr S et al (2014) Life cycle assessment of the electrolytic production and utilization of low carbon hydrogen vehicle fuel. Int J Hydrog Energy 39:7190–7201CrossRef
Zurück zum Zitat Patyk A, Bachmann TM, Brisse A (2013) Life cycle assessment of H2 generation with high temperature electrolysis. Int J Hydrog Energy 38:3865–3880CrossRef Patyk A, Bachmann TM, Brisse A (2013) Life cycle assessment of H2 generation with high temperature electrolysis. Int J Hydrog Energy 38:3865–3880CrossRef
Zurück zum Zitat Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells. Int J Life Cycle Assess 8:283–289CrossRef Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells. Int J Life Cycle Assess 8:283–289CrossRef
Zurück zum Zitat Petrescu L, Müller CR, Cormos C-C (2014) Life cycle assessment of natural gas-based chemical looping for hydrogen production. Energy Procedia 63:7408–7420CrossRef Petrescu L, Müller CR, Cormos C-C (2014) Life cycle assessment of natural gas-based chemical looping for hydrogen production. Energy Procedia 63:7408–7420CrossRef
Zurück zum Zitat Ramos Pereira S, Coelho MC (2013) Life cycle analysis of hydrogen—a well-to-wheels analysis for Portugal. Int J Hydrog Energy 38:2029–2038CrossRef Ramos Pereira S, Coelho MC (2013) Life cycle analysis of hydrogen—a well-to-wheels analysis for Portugal. Int J Hydrog Energy 38:2029–2038CrossRef
Zurück zum Zitat Ramos Pereira S, Fontes T, Coelho MC (2014) Can hydrogen or natural gas be alternatives for aviation?—a life cycle assessment. Int J Hydrog Energy 39:13266–13275CrossRef Ramos Pereira S, Fontes T, Coelho MC (2014) Can hydrogen or natural gas be alternatives for aviation?—a life cycle assessment. Int J Hydrog Energy 39:13266–13275CrossRef
Zurück zum Zitat Reiter G, Lindorfer J (2015) Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. Int J Life Cycle Assess 477–489 Reiter G, Lindorfer J (2015) Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. Int J Life Cycle Assess 477–489
Zurück zum Zitat Rosner V, Wagner H-J (2012) Life cycle assessment and process development of photobiological hydrogen production–from laboratory to large scale applications. Energy Procedia 29:532–540CrossRef Rosner V, Wagner H-J (2012) Life cycle assessment and process development of photobiological hydrogen production–from laboratory to large scale applications. Energy Procedia 29:532–540CrossRef
Zurück zum Zitat Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int J Life Cycle Assess 18:1686–1697CrossRef Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int J Life Cycle Assess 18:1686–1697CrossRef
Zurück zum Zitat Serrano DP, Dufour J, Iribarren D (2012) On the feasibility of producing hydrogen with net carbon fixation by the decomposition of vegetable and microalgal oils. Energy Environ Sci 5:6126–6135CrossRef Serrano DP, Dufour J, Iribarren D (2012) On the feasibility of producing hydrogen with net carbon fixation by the decomposition of vegetable and microalgal oils. Energy Environ Sci 5:6126–6135CrossRef
Zurück zum Zitat Sevencan S, Çiftcioglu GA (2013) Life cycle assessment of power generation alternatives for a stand-alone mobile house. Int J Hydrog Energy 38:14369–14379CrossRef Sevencan S, Çiftcioglu GA (2013) Life cycle assessment of power generation alternatives for a stand-alone mobile house. Int J Hydrog Energy 38:14369–14379CrossRef
Zurück zum Zitat Sgobbi A, Nijs W, De Miglio R et al (2015) How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int J Hydrog Energy 41:1–17 Sgobbi A, Nijs W, De Miglio R et al (2015) How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int J Hydrog Energy 41:1–17
Zurück zum Zitat Shen W, Han W, Chock D et al (2012) Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy 49:296–307CrossRef Shen W, Han W, Chock D et al (2012) Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy 49:296–307CrossRef
Zurück zum Zitat Simons A, Bauer C (2011) Life cycle assessment of hydrogen production. In: Wokaun A, Wilhelm E (eds) Transition to hydrogen: pathways toward clean transportation. Cambridge University Press, Cambridge, pp 13–57CrossRef Simons A, Bauer C (2011) Life cycle assessment of hydrogen production. In: Wokaun A, Wilhelm E (eds) Transition to hydrogen: pathways toward clean transportation. Cambridge University Press, Cambridge, pp 13–57CrossRef
Zurück zum Zitat Simons A, Bauer C (2015) A life-cycle perspective on automotive fuel cells. Appl Energy 157:884–896CrossRef Simons A, Bauer C (2015) A life-cycle perspective on automotive fuel cells. Appl Energy 157:884–896CrossRef
Zurück zum Zitat Smitkova M, Janíček F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrog Energy 36:7844–7851CrossRef Smitkova M, Janíček F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrog Energy 36:7844–7851CrossRef
Zurück zum Zitat Solli C, Strømman AH, Hertwich EG (2006) Fission or fossil: Life cycle assessment of hydrogen production. Proc IEEE 94:1785–1793CrossRef Solli C, Strømman AH, Hertwich EG (2006) Fission or fossil: Life cycle assessment of hydrogen production. Proc IEEE 94:1785–1793CrossRef
Zurück zum Zitat Spath PL, Amos WA (2002) Assessment of natural gas splitting with a concentrating solar reactor for hydrogen production. US National Renewable Energy Laboratory, GoldenCrossRef Spath PL, Amos WA (2002) Assessment of natural gas splitting with a concentrating solar reactor for hydrogen production. US National Renewable Energy Laboratory, GoldenCrossRef
Zurück zum Zitat Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. US National Renewable Energy Laboratory, Golden Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. US National Renewable Energy Laboratory, Golden
Zurück zum Zitat Spath PL, Mann MK (2004) Life cycle assessment of renewable hydrogen production via wind/electrolysis. US National Renewable Energy Laboratory, Golden Spath PL, Mann MK (2004) Life cycle assessment of renewable hydrogen production via wind/electrolysis. US National Renewable Energy Laboratory, Golden
Zurück zum Zitat Suleman F, Dincer I, Agelin-Chaab M (2015) Environmental impact assessment and comparison of some hydrogen production options. Int J Hydrog Energy 40:6976–6987CrossRef Suleman F, Dincer I, Agelin-Chaab M (2015) Environmental impact assessment and comparison of some hydrogen production options. Int J Hydrog Energy 40:6976–6987CrossRef
Zurück zum Zitat Susmozas A, Iribarren D, Dufour J (2013) Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int J Hydrog Energy 38:9961–9972CrossRef Susmozas A, Iribarren D, Dufour J (2013) Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int J Hydrog Energy 38:9961–9972CrossRef
Zurück zum Zitat Susmozas A, Iribarren D, Dufour J (2015) Assessing the life-cycle performance of hydrogen production via biofuel reforming in Europe. Resources 4:398–411CrossRef Susmozas A, Iribarren D, Dufour J (2015) Assessing the life-cycle performance of hydrogen production via biofuel reforming in Europe. Resources 4:398–411CrossRef
Zurück zum Zitat Tock L, Maréchal F (2012) Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization. Energy 45:339–349CrossRef Tock L, Maréchal F (2012) Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization. Energy 45:339–349CrossRef
Zurück zum Zitat Tong F, Jaramillo P, Azevedo IML (2015) Comparison of life cycle greenhouse gases from natural gas pathways for light-duty vehicles. Energy Fuels 29:6008–6018CrossRef Tong F, Jaramillo P, Azevedo IML (2015) Comparison of life cycle greenhouse gases from natural gas pathways for light-duty vehicles. Energy Fuels 29:6008–6018CrossRef
Zurück zum Zitat Torchio MF, Santarelli MG (2010) Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs—European market analysis. Energy 35:4156–4171CrossRef Torchio MF, Santarelli MG (2010) Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs—European market analysis. Energy 35:4156–4171CrossRef
Zurück zum Zitat Utgikar VP, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrog Energy 31:939–944CrossRef Utgikar VP, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrog Energy 31:939–944CrossRef
Zurück zum Zitat Utgikar VP, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRef Utgikar VP, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRef
Zurück zum Zitat Valente A, Iribarren D, Dufour J, Spazzafumo G (2015) Life-cycle performance of hydrogen as an energy management solution in hydropower plants: a case study in Central Italy. Int J Hydrog Energy 40:16660–16672CrossRef Valente A, Iribarren D, Dufour J, Spazzafumo G (2015) Life-cycle performance of hydrogen as an energy management solution in hydropower plants: a case study in Central Italy. Int J Hydrog Energy 40:16660–16672CrossRef
Zurück zum Zitat Verma A, Kumar A (2015) Life cycle assessment of hydrogen production from underground coal gasification. Appl Energy 147:556–568CrossRef Verma A, Kumar A (2015) Life cycle assessment of hydrogen production from underground coal gasification. Appl Energy 147:556–568CrossRef
Zurück zum Zitat Wagner U, Geiger B, Schaefer H (1998) Energy life cycle analysis of hydrogen systems. Int J Hydrog Energy 23:1–6CrossRef Wagner U, Geiger B, Schaefer H (1998) Energy life cycle analysis of hydrogen systems. Int J Hydrog Energy 23:1–6CrossRef
Zurück zum Zitat Wagner U, Eckl R, Tzscheutschler P (2006) Energetic life cycle assessment of fuel cell powertrain systems and alternative fuels in Germany. Energy 31:2726–2739CrossRef Wagner U, Eckl R, Tzscheutschler P (2006) Energetic life cycle assessment of fuel cell powertrain systems and alternative fuels in Germany. Energy 31:2726–2739CrossRef
Zurück zum Zitat Walker SB, Fowler M, Ahmadi L (2015) Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles. J Energy Storage 4:62–73CrossRef Walker SB, Fowler M, Ahmadi L (2015) Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles. J Energy Storage 4:62–73CrossRef
Zurück zum Zitat Wang MQ (1996) GREET 1.5 – Transportation fuel-cycle model – Volume 1 : methodology, development, use, and results. Argonne National Laboratory, ArgonneCrossRef Wang MQ (1996) GREET 1.5 – Transportation fuel-cycle model – Volume 1 : methodology, development, use, and results. Argonne National Laboratory, ArgonneCrossRef
Zurück zum Zitat Wang CW, Zhou SL, Hong XL et al (2005) A comprehensive comparison of fuel options for fuel cell vehicles in China. Fuel Process Technol 86:831–845CrossRef Wang CW, Zhou SL, Hong XL et al (2005) A comprehensive comparison of fuel options for fuel cell vehicles in China. Fuel Process Technol 86:831–845CrossRef
Zurück zum Zitat Wang D, Zamel N, Jiao K et al (2013) Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy 59:402–412CrossRef Wang D, Zamel N, Jiao K et al (2013) Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy 59:402–412CrossRef
Zurück zum Zitat Weinberg J, Kaltschmitt M (2013) Life cycle assessment of mobility options using wood based fuels—comparison of selected environmental effects and costs. Bioresour Technol 150:420–8CrossRef Weinberg J, Kaltschmitt M (2013) Life cycle assessment of mobility options using wood based fuels—comparison of selected environmental effects and costs. Bioresour Technol 150:420–8CrossRef
Zurück zum Zitat Weiss MA, Heywood JB, Drake EM et al (2000) On the road in 2020—a life-cycle analysis of new automobile technologies. Massachusetts Institute of Technology, Cambridge Weiss MA, Heywood JB, Drake EM et al (2000) On the road in 2020—a life-cycle analysis of new automobile technologies. Massachusetts Institute of Technology, Cambridge
Zurück zum Zitat Winter U, Weidner H (2003) Hydrogen for the mobility of the future results of GM/Opel’s well-to-wheel studies in North America and Europe. Fuel Cells 3:76–83CrossRef Winter U, Weidner H (2003) Hydrogen for the mobility of the future results of GM/Opel’s well-to-wheel studies in North America and Europe. Fuel Cells 3:76–83CrossRef
Zurück zum Zitat Wu YE, Wang MQ, Vyas AD (2006) Well-To-Wheels analysis of energy use and greenhouse gas emissions of hydrogen produced with nuclear energy. Nucl Technol 155:192–207 Wu YE, Wang MQ, Vyas AD (2006) Well-To-Wheels analysis of energy use and greenhouse gas emissions of hydrogen produced with nuclear energy. Nucl Technol 155:192–207
Zurück zum Zitat Wulf C, Kaltschmitt M (2012) Life cycle assessment of hydrogen supply chain with special attention on hydrogen refuelling stations. Int J Hydrog Energy 37:16711–16721CrossRef Wulf C, Kaltschmitt M (2012) Life cycle assessment of hydrogen supply chain with special attention on hydrogen refuelling stations. Int J Hydrog Energy 37:16711–16721CrossRef
Zurück zum Zitat Wulf C, Kaltschmitt M (2013) Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour Technol 150:466–475CrossRef Wulf C, Kaltschmitt M (2013) Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour Technol 150:466–475CrossRef
Zurück zum Zitat Zamel N, Li X (2006) Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada. J Power Sources 155:297–310CrossRef Zamel N, Li X (2006) Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada. J Power Sources 155:297–310CrossRef
Metadaten
Titel
Life cycle assessment of hydrogen energy systems: a review of methodological choices
verfasst von
Antonio Valente
Diego Iribarren
Javier Dufour
Publikationsdatum
23.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 3/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-016-1156-z

Weitere Artikel der Ausgabe 3/2017

The International Journal of Life Cycle Assessment 3/2017 Zur Ausgabe