Skip to main content

Advertisement

Log in

A method for developing a large-scale sediment yield index for European river basins

  • SEDIMENTS, SEC 3 • SEDIMENT MANAGEMENT AT THE RIVER BASIN SCALE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, aim, and scope

Sediment fluxes within continental areas play a major role in biogeochemical cycles and are often the cause of soil surface degradation as well as water and ecosystem pollution. In a situation where a high proportion of the land surface is experiencing significant global land use and climate changes, it appears important to establish sediment budgets considering the major processes forcing sediment redistribution within drainage areas. In this context, the aim of this study is to test a methodology to estimate a sediment yield index at a large spatial resolution for European river basins.

Data and methods

Four indicators representing processes respectively considered as sources (mass movement and hillslope erosion), sinks (deposits), and transfers of sediments (drainage density) are defined using distributed data. Using these indicators we propose a basic conceptual approach to test the possibility of explaining sediment yield observed at the outlet of 29 selected European river basins. We propose an index which adds the two sources and transfers, and subsequently subtracts the sink term. This index is then compared to observed sediment yield data.

Results

With this approach, variability between river basins is observed and the evolution of each indicator analyzed. A linear regression shows a correlation coefficient of 0.83 linking observed specific sediment yield (SSY) with the SSY index.

Discussion

To improve this approach at this large river basin scale, basin classification is further refined using the relation between the observed SSY and the index obtained from the four indicators. It allows a refinement of the results.

Conclusions

This study presents a conceptual approach offering the advantages of using spatially distributed data combined with major sediment redistribution processes to estimate the sediment yield observed at the outlet of river basins.

Recommendations and perspectives

Inclusion of better information on spatial variability should refine the approach. In this respect, basin classification and partition can be useful when applying the model to homogeneous areas. Moreover, to assess the relative effect of each sediment redistribution process, indicators could be weighted for each basin typology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apitz S, White S (2003) A conceptual framework for river-basin-scale sediment management. J Soils Sediments 3:132–138

    Article  Google Scholar 

  • Aquater (1982) Regione Marche. Studio general per la difesa della costa primera fase/San Lorenzo in Campo, Rapporti di Settore, vol. 2, p 706

  • Bagnold RA (1966) An approach to the sediment transport problem from General physics. US Geol Survey Prof Paper 422-I

  • Bagnold RA (1977) Bedload transport in natural rivers. Water Resour Res 13(2):303–312

    Article  Google Scholar 

  • Blanc G, Lapaquellerie Y, Maillet N, Anschutz P (1999) A cadmium budget for the Lot-Garonne fluvial system (France). Hydrobiologia 410:331–341

    Article  CAS  Google Scholar 

  • Cerdan O, Le Bissonnais Y, Couturier A, Bourennane H, Souchère V (2002) Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil Tillage Res 67:99–108

    Article  Google Scholar 

  • Cerdan O, Poesen J, Govers G, Saby N, Le Bissonnais Y, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FPM, Roxo MJ (2006) Sheet and rill erosion. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Wiley, New York

    Google Scholar 

  • Church M, Slaymaker HO (1989) Desequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337:452–454

    Article  Google Scholar 

  • Coynel A, Schäfer J, Blanc G, Bossy C (2007) Scenario of particulate trace metal and metalloid transport during a major flood event inferred from transient geochemical signals. Appl Geochem 22:821–836

    Article  CAS  Google Scholar 

  • De Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci Rev 71:95–125

    Article  Google Scholar 

  • De Vente J, Poesen J, Bazzoffi P, Van Rompaey A, Verstraeten G (2006) Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf Proc Land 31:1017–1034

    Article  Google Scholar 

  • De Vente J, Poesen J, Arabkhedri M, Verstraeten G (2007) The sediment delivery problem revisited. Prog Phys Geogr 31:155–178

    Article  Google Scholar 

  • Douglas G, Palmer M, Caitcheon G (2003) The provenance of sediments in Moreton Bay, Australia: a synthesis of major, trace element and Sr–Nd–Pb isotopic geochemistry, modelling and landscape analysis. Hydrobiologia 494:145–152

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2008) AQUASTAT: Global River Sediment Yields Database. Land and Water Development Division. <http://www.fao.org/ag/aGL/aglw/aquastat/sediment/index.asp>

  • Ferro V, Minacapilli M (1995) Sediment delivery processes at basin scale. Hydrol Sci J 40:703–717

    Google Scholar 

  • Förstner U, Heise S, Schwartz R, Westrich BJ, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe River catchment area. J Soils Sediments 4:247–260

    Article  Google Scholar 

  • Heinrich A (2007) Sediment management: an essential element of river basin management plans. J Soils Sediments 7:117–132

    Article  Google Scholar 

  • Holeman JN (1968) The sediment yield of major rivers of the world. Water Resour Res 4(4):737–747

    Article  Google Scholar 

  • Hooke J (2003) Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 56:79–94

    Article  Google Scholar 

  • Int. Assoc. Sci./UNESCO (1974) Gross sediment transport into the oceans, preliminary Edition: Unesco SC. 4/WS/33, 4 p. plus 6 tables and 2 maps

  • Judson S (1968) Erosion rates near Rome, Italy. Science 60:1444–1445

    Article  Google Scholar 

  • Kempe S (1992) die Elbe. der geologische Blick. In: Die Elbe, ein Lebenslauf, Deutsches Historisches Museum, Berlin, pp 25–33

  • Kempe S, Mycke B, Seeger M (1981) Flußfrachten und erosionsraten in Mitteleuropa 1966–1973. Wasser und Boden 1981(3):126–131

    Google Scholar 

  • Lane LJ, Hernandez M, Nichols M (1997) Processes controlling sediment yield from watersheds as functions of spatial scale. Environ Model Softw 12(4):355–369

    Article  Google Scholar 

  • Lisitzin AP (1972) Sedimentation in the world ocean. Soc Econ Paleont Mineral Spec Pub 17:218

    Google Scholar 

  • Ludwig W, Probst JL (1998) River sediment discharge to the oceans: present-day controls and global budgets. Am J Sci 298:265–295

    CAS  Google Scholar 

  • Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biochem Cycles 10:23–41

    Article  CAS  Google Scholar 

  • Lugo AE (1983) Organic carbon export by riverine waters of Spain. In: Degens ET, Kempe S, Soliman H (eds) Transport of carbon and minerals in major world rivers. Pt. 2: Mitt GeolPaläont Int Univ Hamburg. SCOPE/UNEP special issue 55:267–279

  • Macaire JJ, Bellemlih S, Di-Giovanni C, De Luca P, Visset L, Bernard J (2002) Sediment yield and storage variations in the Negron River catchment (South Western Parisian Basin, France) during the holocene period. Earth Surf Proc Land 27:991–1009

    Article  Google Scholar 

  • Maner SB (1958) Factors affecting sediment delivery rates in the Red Hills physiographic area. Trans Am Geophys Union 39:669–675

    Google Scholar 

  • Mano V, Moatar F, Coynel A, Etcheber H, Ludwig W, Meybeck M, Nemery J, Poirel A, Blanc G, Schäfer J (2006) Space and time variability of suspended particulate matter (SPM) transport in 32 French rivers (100 to 100,000 km²; daily to yearly). Sediment Dynamics and the Hydromorphology of Fluvial Systems ICCE IAHS International Symposium, 3rd–7th July 2006, Dundee Scotland (Poster Report Booklet), pp 29–37

  • Meritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport models. Environ Model Softw 18:761–799

    Article  Google Scholar 

  • Meybeck M, Ragu A (1995) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients, report, U. N. Environment Programme (UNEP), Nairobi, p 245

  • Milliman JD, Meade RH (1983) World Wide delivery of river sediment to the ocean. J Geol 91:1–21

    Article  Google Scholar 

  • Milliman JD, Syvitski PM (1992) Geomorphic/tectonic control of sediment discharges to the ocean: the importance of small montainous rivers. J Geology 100:525–544

    Article  Google Scholar 

  • Milliman JD, Rutkowski C, Meybeck M (1995) River discharge to the sea: a global river index(GLORI). LOICZ Reports & Studies, No. 2. The Netherlands, p 125

  • Moatar F, Person G, Meybeck M, Coynel A, Etcheber H, Crouzet P (2006) The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. Sci Total Environ 370(2–3):515–531

    CAS  Google Scholar 

  • Nearing MA, Romkens MJM, Norton LD, Stott DE, Rhoton FE, Laflen JM, Flanagan DC, Alonso CV, Binger RL, Dabney SM, Doering OC, Huang CH, McGregor KC, Simon A (2000) Measurements and models of soil loss rates. Science 290(5495):1300–1301

    Article  CAS  Google Scholar 

  • Owens PN (2005a) Soil erosion and sediment fluxes in river basins: the influence of anthropogenic activities and climate change. In: Lens P, Grotenhuis T, Malina G, Tabak H (eds) Soil and sediment remediation. IWA, London, pp 418–433

    Google Scholar 

  • Owens PN (2005b) Conceptual models and budgets for sediment management at the river basin scale. J Soils Sediments 5:201–212

    Article  CAS  Google Scholar 

  • Owens PN, Batalla RJ (2003) A first attempt to approximate Europe’s sediment budget. SedNet Work Package 2 Report. http://www.sednet.org

  • Owens PN, Walling DE (2003) Temporal changes in the metal and phosphorus content of suspended sediment transported by Yorkshire rivers, U.K. over the last 100 years, as recorded by overbank floodplain deposits. Hydrobiologia 494:185–191

    Article  CAS  Google Scholar 

  • Owens PN, Walling DE, Shanahan J, He Q, Foster IDL (1997) The use of caesium-137 measurements to establish a sediment budget for the Start River catchment, Devon, UK. Hydrol Sci J 42:405–423

    Article  Google Scholar 

  • Owens PN, Apitz S, Batalla R, Collins A, Eisma M, Glindemann H, Hoonstra S, Köthe H, Quinton J, Taylor K, Westrich B, White S, Wilkinson H (2004) Sediment management at the river basin scale: synthesis of SedNet Working Group 2 outcomes. J Soils Sediments 4:219–222

    Article  Google Scholar 

  • Palanques A, Guillen J, Maldonado A (1990) Recent influence of man in the Ebro margin sedimentation system, northwestern Mediterranean Sea. Mar Geol 95:247–263

    Article  Google Scholar 

  • Panin A (2004) Land-ocean sediment transfer in paleotimes, and implications for present day natural fluvial fluxes. In: Golosov V, Belyaev V, Walling DE (eds) Sediment transfer through the fluvial system. IAHS, Wallingford, pp 115–124

    Google Scholar 

  • Philips JD, Gares P, Slattery MC (1999) Agricultural soil redistribution and landscape complexity. Landscape Ecol 14:197–211

    Article  Google Scholar 

  • Poesen J, Lavee H (1994) Rock fragments in top soils—significance and processes. Catena 23:1–28

    Article  Google Scholar 

  • Poesen J, Van Wesemael B, Govers G, Martinez-Fernandez J, Desmet P, Vandaele K, Quine T, Degraer G (1997) Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18:183–197

    Article  Google Scholar 

  • Probst J-L (1983) Hydrologie du bassin de la Garonne. Modèle de mélanges. Bilan de l'érosion. Exportation des phosphates et des nitrates. Thèse de Doctorat de 3 ème Cycle. Université P. Sabatier de Toulouse, p 148

  • Probst JL, Bazerbachi A (1986) Transports en solution et en suspension par la Garonne supérieure. Strasbourg, Sciences géologiques, Bulletin 39:79–98

    Google Scholar 

  • Prosser IP, Rustomji P, Young WJ, Moran CJ, Hughes AO (2001) Constructing river basin sediment budgets for the national land and water resources audit, Tech. Rep. 15/01, CSIRO Land and Water, Canberra

  • Puigdefabregas J, Alonso JM, Delgado L, Domingo F, Cueto M, Gutierrez L, Lazaro R, Nicolau JM, Sanchez G, Sole A, Vidal S (1996) The Rambla Honda field site: interactions of soil and vegetation along a catena in semi-arid Southeast Spain. In: Brandt CJ, Thornes JB (eds) Mediterranean desertification and land use. Wiley, Chichester, pp 137–168

    Google Scholar 

  • Rovira A, Batalla RJ (2006) Temporal distribution of suspended sediment transport in Mediterranean basin: the Lower Tordera (NE Spain). Geomorphology 79(1–2):58–71

    Article  Google Scholar 

  • Slaymaker O (2003) The sediment budget as conceptual framework and management tool. Hydrobiologia 494:71–82

    Article  Google Scholar 

  • Snoussi M, Jouanneau JM, Latouche C (1989) Impact du climat sur les apports fluviatiles : étude comparative des flux de l'Adour et du Souss (Maroc). Bull. Inst.Geol.Bassin d’Aquitaine. Bordeaux 46:119–126

    Google Scholar 

  • Summer W, Walling DE (eds) (2002) Modelling erosion, sediment transport and sediment yield. OHP-VI Technical Documents in Hydrology 60, UNESCO, Paris

  • Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162:5–24

    Article  Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  CAS  Google Scholar 

  • Trimble SW (1983) A sediment budget for Coon Creek Basin in the riftless area, Wisconsin, 1853–1977. Am J Sci 283:454–474

    Google Scholar 

  • Trimble SW, Crosson P (2000a) Land use—US soil erosion rates—myth and reality. Science 289(5477):248–250

    Article  CAS  Google Scholar 

  • Trimble SW, Crosson P (2000b) Measurements and models of soil loss rates—response. Science 290(5495):1301–1301

    CAS  Google Scholar 

  • UNESCO (1971) Discharge of selected rivers of the World. A contribution to the Intern. Hydrol. Dec., vol. I–II, UNESCO, Paris

  • UNESCO (1978) WORRI World Register of Rivers Discharging into the Oceans. Provisional Report (Unpublished Rept), Unesco, 7pp + annexes

  • UNESCO/UNEP (1978) Catalogue des principaux fleuves se jetant dans la Méditerranée. Unesco IHP/MED/INF.1, p 21

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629

    Article  CAS  Google Scholar 

  • Van Rompaey AJJ, Govers G, Baudet M (1999) A strategy for controlling error of distributed environmental models by aggregation. Int J Geogr Inf Sci 13(6):577–590

    Article  Google Scholar 

  • Van Rompaey A, Verstraeten G, Van Oost K, Govers G, Poesen J (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf Proc Land 26:1221–1236

    Article  Google Scholar 

  • Vericat D, Batalla RJ (2005) Sediment transport in a highly regulated fluvial system during two consecutive floods (lower Ebro River, NE Iberian Peninsula). Earth Surf Proc Land 30:385–402

    Article  Google Scholar 

  • Vericat D, Batalla RJ (2006) Sediment transport in a large impounded river: the lower Ebro, NE Iberian Peninsula. Geomorphology 79:72–92

    Article  Google Scholar 

  • Verstraeten G, Poesen J (2000) Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40:123–144

    Article  Google Scholar 

  • Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407:853–868

    Article  CAS  Google Scholar 

  • Vogt J, Soille P, de Jager A, Rimaviciuté E, Mehl W, Foisneau S, Bodis K, Dusart J, Paracchini ML, Haastrup P, Bamps C (2007) A pan-European River and Catchment Database. European Commission, EUR 22920 EN—Joint Research Centre—Institute for Environment and Sustainability. Luxembourg: Office for Official Publications of the European Communities. 120pp. http://ec.europa.eu/dgs/jrc/downloads/jrc_reference_report_2007_10_rivercatchment.pdf

  • Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39:169–190

    Article  Google Scholar 

  • Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237

    Article  Google Scholar 

  • Walling DE (2006) Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79:192–216

    Article  Google Scholar 

  • Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Global Planet Change 39(1–2):111–126

    Article  Google Scholar 

  • Walling DE, Russell MA, Hodgkinson RA, Zhang Y (2001) Establishing sediment budgets for two small lowland agricultural catchments in the UK. Catena 47:323–353

    Article  Google Scholar 

  • Wishmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. USDA Agricultural Handbook 537

  • Yang CT (1972) Unit stream power and sediment transport. J Hydraul Div, ASCE 98:1805–1826

    Google Scholar 

  • Yang CT (1976) Minimum unit stream power and fluvial hydraulics. J Hydraul Div, ASCE 102:919–934

    Google Scholar 

Download references

Acknowledgements

This study is financed through the Regolithe and RiskMVT research projects of BRGM. We would like to particularly thank P. Thierry and L. Closset for their help concerning the mass movement indicator definition, and for sharing their knowledge in this domain. We are also especially grateful to H. Bourennane for its comments and advices for the result presentation. Finally, the authors would like to thank the anonymous reviewers and the submission editor for their relevant comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magalie Delmas.

Additional information

Responsible editor: Philip N. Owens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delmas, M., Cerdan, O., Mouchel, JM. et al. A method for developing a large-scale sediment yield index for European river basins. J Soils Sediments 9, 613–626 (2009). https://doi.org/10.1007/s11368-009-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-009-0126-5

Keywords

Navigation