Skip to main content

Advertisement

Log in

The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review

  • SEDIMENTS, SEC 1 • SEDIMENT QUALITY AND IMPACT ASSESSMENT • REVIEW ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Sediments serve as integral and dynamic parts of our aquatic systems. Within the last 15 to 20 years, however, the scientific community has begun noticing deterioration of sediment quality at an alarming rate worldwide. Sediments are now harboring hazardous pollutants that can directly influence water quality, thereby creating very stressful conditions for aquatic life. As a consequence, global efforts were initiated in the early 1970s, to find ways to assess sediment quality. Because of their obvious ecological and economic significance, fish have remained a major taxonomic group for appraising the general quality of aquatic systems. However, for sediment risk assessment, fish have lagged behind invertebrates due to their mobility and generally, pelagic lifestyle. To our knowledge, this is the first paper that comprehensively presents and reviews the versatile role of fish in assessing the state of health of aquatic sediments.

Main features

Through a literature search of the more relevant and/or more recent studies, this review attempted to trace the development of the various approaches as well as to describe the future prospects of using fish as sentinels for sediment quality assessment. Initially, the use of whole fish (juveniles or adults) bioassays contributed immensely to our understanding of sediment contamination and ecotoxicology. But due to economic as well as ethical issues linked to the use of live vertebrates for toxicity testing, the approach has shifted to using fish cell cultures and fish embryos. Much newer approaches involving receptors and gene arrays in fish cells to elucidate the mode of action of sediment-borne contaminants are very promising. The review paper also lists and explores some of the issues associated with the use of juvenile or adult fish, fish cell cultures, fish embryos, and fish gene expression profiles in sediment toxicity evaluations to stimulate further discussions, and hopefully, to serve as benchmark for future handling of similar or related aspects of fish utilization in sediment risk assessment.

Conclusions and perspectives

Overall, the present review has comprehensively explored the changing and progressing roles of fish in sediment toxicity evaluation. Indeed the usefulness of this taxon as test organisms has provided a significant contribution to the advancement of sediment toxicology. However, despite the quite optimistic and bright future for these current procedures, a number of issues and problems remain. Therefore, efforts to develop new technologies and to refine current methods and approaches continue to challenge many laboratories worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali F, Lazar R, Haffner D, Adeli K (1993) Development of a rapid and simple genotoxicity assay using a brown bullhead fish cell line: application to toxicological surveys of sediments in the Huron–Erie corridor. J Great Lakes Res 19:324–351

    Article  Google Scholar 

  • Almeida JS, Meletti PC, Martinez CBR (2005) Acute effects of sediments taken from an urban stream on physiological and biochemical parameters of the neotropical fish Prochilodus lineatus. Comp Biochem Physiol Part C 140:356–363

    Google Scholar 

  • Ankley GT (1991) Predicting the toxicity of bulk sediments to aquatic organisms with aqueous test fractions: pore water vs. elutriate. Environ Toxicol Chem 10:1359–1366

    Article  CAS  Google Scholar 

  • Ankley GT, Katko A, Arthur JW (1990) Identification of ammonia as an important sediment-associated toxicant in the lower Fox River and Green Bay, Wisconsin. Environ Toxicol Chem 9:313–322

    Article  CAS  Google Scholar 

  • Ankley GT, Lodge K, Call DJ, Balcer MD, Brooke LT, Cook PM, Kreis RG Jr, Carlson AR, Johnson RD, Niemi GJ, Hoke RA, West CW, Giesy JP, Jones PD, Fuying ZC (1992) Integrated assessment of contaminated sediments in the Lower Fox and Green Bay, Wisconsin. Ecotoxicol Environ Saf 23:46–63

    Article  CAS  Google Scholar 

  • ASTM E1688-00a (2007) Standard guide for determination of the bioaccumulation of sediment-associated contaminants by Benthic Invertebrates

  • ASTM E1367-03 (2008) Standard test method for measuring the toxicity of sediment-associated contaminants with estuarine and marine invertebrates

  • Baksi SM, Frazier JM (1990) Review—isolated fish hepatocytes—model systems for toxicology research. Aquat Toxicol 16:229–256

    Article  CAS  Google Scholar 

  • Barbee GC, Barich J, Duncan B, Bickham JW, Hintze MCW, CJ ARL, Zhou GD, McDonald TJ, Cizmas L, Norton D, Donnely KC (2008) In situ biomonitoring of PAH-contaminated sediments using juvenile coho salmon (Oncorhynchus kisutch). Ecotoxicol Environ Saf 71:454–464

    Article  CAS  Google Scholar 

  • Barcelo D, Petrovic M (eds) (2007) Sustainable management of sediment resources: sediment quality and impact assessment of pollutants. SedNet, Elsevier, Amsterdam

    Google Scholar 

  • Barra R, Sanchez-Hernandez JC, Orrego R, Parra O, Gavilan JF (2001) Bioavailability of PAHs in the Biobio river (Chile): MFO activity and biliary fluorescence in juvenile Oncorhynchus mykiss. Chemosphere 45:439–444

    Article  CAS  Google Scholar 

  • Bat L (2005) A review of sediment toxicity bioassays using the amphipods and polychaetes. Turk J Fish Aquat Sci 5:119–139

    Google Scholar 

  • Baudo R, Beltrami M, Rossi D (1999) In situ tests to assess the potential toxicity of aquatic sediments. Aquat Ecosyst Health Manag 2:361–365

    Article  CAS  Google Scholar 

  • Belfiore NM, Anderson SL (2001) Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutat Res 489:97–122

    Article  CAS  Google Scholar 

  • Besselink HT, Flipsen E, Eggens ML, Vethaak AD, Koeman JH, Brouwer A (1998) Alterations in plasma and hepatic retinoid levels in flounder (Platichthys flesus) after chronic exposure to contaminated harbor sludge in a mesocosm study. Aquat Toxicol 42:271–285

    Article  CAS  Google Scholar 

  • Beyer J, Sandvikb M, Hylland K, Fjeld E, Egaas E, Aas E, Utne Skfueb J, Gokssyr A (1996) Contaminant accumulation and biomarker responses in flounder (Platichthys ilesus L.) exposed by caging to polluted sediments in Sarrfjorden, Norway. Aquat Toxicol 36:75–98

    Article  CAS  Google Scholar 

  • Black JJ (1983) Field and laboratory studies of environmental carcinogenesis in Niagara River fish. J Great Lakes Res 9:326–334

    Article  CAS  Google Scholar 

  • Bols NC, Boliska SA, Dixon DG, Hodson PV, Kaiser KLE (1985) The use of fish cell cultures as an indication of contaminant toxicity to fish. Aquat Toxicol 6:147–155

    Article  CAS  Google Scholar 

  • Brack W, Schirmer K (2003) Effect-directed identification of oxygen and sulfur heterocycles as major polycyclic aromatic cytcohrome P4501A-inducers in a contaminated sediment. Environ Sci Technol 37:3062–3070

    Article  CAS  Google Scholar 

  • Brack W, Schirmer K, Erdinger L, Hollert H (2005) Effect-directed analysis of mutagens and ethoxyresorufin-o-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24:2445–2458

    Article  CAS  Google Scholar 

  • Braunbeck T (1998) Cytological alterations in fish hepatocytes – in vivo and in vitro biomarkers of environmental contamination. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology, Experientia, Suppl. Birkhaüser, Basel, pp 61–140

    Google Scholar 

  • Braunbeck T, Strmac M (2001) Assessment of water and sediment contamination in small streams by means of cytological and biochemical alterations in isolated rainbow trout (Oncorhynchus mykiss) hepatocytes. J Aquat Ecosyst Stress Recovery 8:337–354

    Article  CAS  Google Scholar 

  • Braunbeck T, Böttcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryotoxicity test goes multispecies—an update. ALTEX 22:87–102

    Google Scholar 

  • Bucke D, Dixon PF, Feist SW, Law RJ (1989) The measurement of disease susceptibility in dab, Limanda limanda L. following long-term exposure to contaminated sediments: preliminary studies. Mar Environ Res 28:363–367

    Article  CAS  Google Scholar 

  • Burgess RM, Scott KJ (1992) The significance of in-place contaminated marine sediments on the water column: processes and effects. In: Burton GA (ed) Sediment toxicity assessment. Lewis, Ann Arbor, p 129

    Google Scholar 

  • Burton GA Jr (1991) Assessing the toxicity of freshwater sediments: annual review. Environ Toxicol Chem 10:1585–1627

    Article  CAS  Google Scholar 

  • Burton GA Jr, Scott KJ (1992) Sediment toxicity evaluations their niche in ecological assessments. Environ Sci Technol 26(11):2069–2075

    Article  Google Scholar 

  • Cachot J, Law M, Pottier D, Peluhet L, Norris M, Budzinski H, Winn R (2007) Characterization of toxic effects of sediment-associated organic pollutants using the lambda transgenic medaka. Environ Sci Technol 41:7820–7836

    Article  CAS  Google Scholar 

  • Castano A, Gomez-Lechon M (2005) Comparison of basal cytotoxicity data between mammalian and fish cell lines: a literature survey. Toxicol in Vitro 19:695–705

    Article  CAS  Google Scholar 

  • Castano A, Cantarino MJ, Catillo P, Tarazona JV (1996) Correlation between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere 32:2141–2157

    Article  CAS  Google Scholar 

  • Champ WST, Kelly FL, King JJ (2009) The water framework directive: using fish as a management tool. Biol Environ: Proc Royal Irish Acad 109:191–206

    Article  Google Scholar 

  • Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6:4–8

    Article  Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22

    Article  CAS  Google Scholar 

  • Chapman PM, Vigers GA, Farrell MA, Dexter RN, Quinlan EA, Kocan RM, Landolt M (1982) Survey of biological effects of toxicants upon puget sound biota. I. Broad-scale toxicity study. U.S. Dept. of Commerce, NOAA Tech. Memo OMPA-25, 98 pp

  • Chapman PM, Wang F, Germano J, Batley G (2002) Pore water testing and analysis: the good, the bad, and the ugly. Mar Pollut Bull 44:359–366

    Article  CAS  Google Scholar 

  • Chappie DJ, Burton GA Jr (2000) Applications of aquatic and sediment toxicity testing in situ. Soil Sediment Contam 9:219–245

    CAS  Google Scholar 

  • Cheung YH, Neller A, Chu KH, Tam NFY, Wong CK, Wong YS, Wong MH (1997) Assessment of sediment toxicity using different trophic organisms. Arch Environ Contam Toxicol 32:260–267

    Article  CAS  Google Scholar 

  • Costa PM, Lobo J, Caeiro S, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TA, Costa MH (2008) Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): effects of metallic and organic contaminants. Mutat Res/Gen Toxicol Environ Mutat 654:29–37

    Article  CAS  Google Scholar 

  • Cunha I, Neuparth T, Caeiro S, Costa MH, Guilhermino L (2007) Toxicity ranking of estuarine sediments on the basis of Sparus aurata biomarkers. Environ Toxicol Chem 26:444–453

    Article  CAS  Google Scholar 

  • Dave G, Xiu R (1991) Toxicity of mercury, copper, nickel, lead, and cobalt to embryo and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol 21:126–34

    Article  CAS  Google Scholar 

  • Davoren M, Ni Shuilleabhain S, Hartl MGJ, Sheehan D, O’Brien NM, Halloran JO, Van Pelt FNAM, Mothersill C (2005) Assessing the potential of fish cell lines as tools for the cytotoxicity testing of estuarine sediment aqueous elutriates. Toxicol in Vitro 19:421–431

    Article  CAS  Google Scholar 

  • Dawe CJ, Stanton ME, Schwartz FJ (1964) Hepatic neoplasms in native bottom feeding fish of Deep Creek Lake, Maryland. Cancer Res 24:1194–1201

    CAS  Google Scholar 

  • Dawson DA, Stebler EF, Burks SL, Bantle JA (1988) Evaluation of the developmental toxicity of metal-contaminated sediments using short-term fathead minnow and frog embryo-larval assays. Environ Toxicol Chem 7:27–34

    Article  CAS  Google Scholar 

  • DeFlora S, Vigano L, D’Agostini F, Camoirano A, Bagnasco M, Bennicelli C, Melodia F, Arillo A (1993) Multiple genotoxicity biomarkers in fish exposed in situ to polluted river water. Mutat Res 319:167–177

    Article  CAS  Google Scholar 

  • Delfino JJ (1979) Toxic substances in the Great Lakes. Environ Sci Technol 13:1462–1468

    Article  CAS  Google Scholar 

  • DelValls TA, Blasco J, Sarasquete MC, Forja JM, Gomez-Parra A (1998) Evaluation of heavy metal sediment toxicity in littoral ecosystems using juveniles of the fish Sparus aurata. Ecotoxicol Environ Saf 41:157–167

    Article  CAS  Google Scholar 

  • Denslow ND, Garcia-Reyero N, Barber DS (2007) Fish ‘n’ chips: the use of microarrays for aquatic toxicology. Mol BioSyst 3:172–177

    Article  CAS  Google Scholar 

  • Di Giulio RT, Habig C, Gallagher EP (1993) Effects of black rock harbour sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. Aquat Toxicol 26:1–22

    Article  Google Scholar 

  • DIN (2001) German standard methods for the examination of water, waste water and sludge—Subanimal testing (group T)—Part 6: Toxicity to fish. Determination of the Non-acute-Poisonous Effect of Waste Water to Fish Eggs by Dilution Limits (T 6). DIN 38415-6. German Standardization Organization.Berlin, Germany

  • DiPinto LM (1996) Trophic transfer of a sediment-associated organophosphate pesticide from meiobenthos to bottom feeding fish. Arch Environ Contam Toxicol 30:459–466

    Article  CAS  Google Scholar 

  • Dipple A, Bigger CAH (1983) Metabolic properties of in vitro systems In: Williams GM, Dunkel VC, Ray VA. (eds) Cellular systems for toxicity testing. Ann NY Acad Sci 407:26–33

  • Ekwall B (1983) Screening of toxic compounds in mammalian cell cultures. In: Williams GM, Dunkel VC, Ray VA (eds) Cellular systems for toxicity testing. Ann NY Acad Sci 407:64–77

  • Ensenbach U (1998) Embryonic development of fish—a model to assess the toxicity of sediments to vertebrates. Fresenius Environ Bull 7:531–538

    CAS  Google Scholar 

  • Ensenbach U, Nagel R (1997) Toxicity of binary chemical mixtures: effects on reproduction of zebrafish (Brachydanio rerio). Arch Environ Contam Toxicol 32:204–210

    Article  CAS  Google Scholar 

  • Environment Canada (1990) Biological test method: acute lethality test using rainbow trout, EPS 1/RM/9, 1990, Cat. No. EN 49-24/1-9E, ISBN 0-662-18074-7

  • Eriksson-Wiklund A-K, Sundelin B, Broman D (2005) Toxicity evaluation by using intact sediments and sediment extracts. Mar Pollut Bull 50:660–667

    Article  CAS  Google Scholar 

  • Fabacher DL, Besser JM, Schmitt CJ, Harshbarger JC, Peterman PH, Lebo JA (1991) Contaminated sediments from tributaries of the Great Lakes: chemical characterization and carcinogenic effects in medaka (Oryzias latipes). Arch Environ Contam Toxicol 20:17–34

    Article  Google Scholar 

  • Feiler U, Ahlf W, Hoess S, Hollert H, Neumann-Hensel H, Meller M, Weber J, Heininger P (2005) The SeKT joint research project: definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Environ Sci Pollut Res 12:257–258

    Article  Google Scholar 

  • Fent K (2001) Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol in Vitro 15:477–488

    Article  CAS  Google Scholar 

  • Foekema EM, Deerenberg CM, Murk AJ (2008) Prolonged ELS test with the marine flatfish sole (Solea solea) shows delayed toxic effects of previous exposure to PCB 126. Aquat Toxicol 90:187–203

    Article  CAS  Google Scholar 

  • Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale. J Soils Sediments 4:247–260

    Article  Google Scholar 

  • Förstner U, Heise S, Ahlf W, Westrich B (2008) Data quality assurance of sediment monitoring. In: Quevauviller Ph, Borchers U, Thompson C, Simonat T (eds) The water framework directive—ecological and chemical monitoring. Chapter 8.2. Wiley, London, pp 375–390

    Google Scholar 

  • Fragoso N, Hodson PV, Zambon S (2006) Evaluation of an exposure assay to measure uptake of sediment PAH by fish. Environ Monit Assess 116:481–511

    Article  CAS  Google Scholar 

  • Francis PC, Birge WJ, Black JA (1984) Effects of cadmium-enriched sediment on fish and amphibian embryo larvale stages. Ecotoxicol Environ Saf 8:378–387

    Article  CAS  Google Scholar 

  • French BL, Reichert WL, Horn T, Nishimoto M, Sanborn HR, Stein JE (1996) Accumulation and dose–response of hepatic DNA adducts in English sole (Pleuronectes vetulus) exposed to a gradient of contaminated sediments. Aquat Toxicol 36:1–16

    Article  CAS  Google Scholar 

  • Friccius T, Schulte C, Ensenbach U et al (1995) Der Embryotest mit dem Zebrabärbling—eine neue Möglichkeit zur Prüfung und Bewertung der Toxizität von Abwasserproben. Vom Wasser 84:407–418

    CAS  Google Scholar 

  • Gagné F, Blaise C (1995) Evaluation of the genotoxicity of environmental contaminants in sediments to rainbow trout hepatocytes. Environ Toxicol Water Qual 10:217–229

    Article  Google Scholar 

  • Gagne F, Trottiera S, Blaise C, Sproull J, Ernst B (1995) Genotoxicity of sediment extracts obtained in the vicinity of creosote-treated wharf to rainbow trout hepatocytes. Toxicol Lett 78:175–182

    Article  CAS  Google Scholar 

  • Gagne F, Blaise C, Bermingham N (1996) Lethal and sublethal effects of marine sediment extracts on rainbow trout hepatocytes. Toxicol Lett 87:85–92

    Article  CAS  Google Scholar 

  • George S, Gubbins M, MacIntosh A, Reynolds W, Sabine V, Scott A, Thain J (2004) A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platichthyes flesus) subjected to estuarine pollution. Mar Environ Res 58:571–575

    Article  CAS  Google Scholar 

  • Giesy JP, Hoke RA (1989) Freshwater sediment toxicity bioassessment—rationale for species selection and test design. J Great Lakes 15:539–569

    Article  CAS  Google Scholar 

  • Guy CP, Pinkney AE, Taylor MH (2006) Effects of sediment-bound zinc contamination on early life stages of the mummichog (Fundulus heteroclitus L.) in the Christina Watershed, Delaware, USA. Environ Toxicol Chem 25:1305–1311

    Article  CAS  Google Scholar 

  • Haasch ML, Prince R, Wejksnora PJ, Cooper KR, Lech JJ (1993) Caged and wild fish: induction of hepatic cytochrome P-450 (CYP1A1) as an environmental biomonitor. Environ Toxicol Chem 12:885–895

    Article  CAS  Google Scholar 

  • Hallare AV, Köhler H-R, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56:659–666

    Article  CAS  Google Scholar 

  • Hallare AV, Schirling M, Luckenbach T, Köhler H-R, Triebskorn R (2005a) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30:7–17

    Article  CAS  Google Scholar 

  • Hallare AV, Pagulayan R, Lacdan N, Köhler H-R, Triebskorn R (2005b) Assessing water quality in a tropical lake using biomarkers in zebrafish embryos: developmental toxicity and stress protein responses. Environ Monit Assess 104:171–187

    Article  CAS  Google Scholar 

  • Hallare AV, Kosmehl T, Schulze T, Hollert H, Köhler H-R, Triebskorn R (2005c) Assessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos. Sci Total Environ 347:254–271

    Article  CAS  Google Scholar 

  • Hallare AV, Factor P, Santos E, Hollert H (2009) Assessing impact of fish cage culture on Taal Lake (Philippines) water and sediment quality using the zebrafish embryo assay. Philipp J Sci 138:91–104

    Google Scholar 

  • Hansen PD, Blasco J, DelValls TA, Poulsen V, van den Heuvel-Greve M (2007) Biological analaysis (Bioassays, biomarkers, biosensors). In: Barcelo D, Petrovic M (eds) Sustainable management of sediment resources: sediment quality and impact assessment of pollutants. SedNet, Elsevier, Amsterdam

    Google Scholar 

  • Hargis WJ, Roberts MH, Zwerner DE (1984) Effects of contaminated sediments and sediment-exposed effluent water on an estuarine fish: acute toxicity. Mar Environ Res 14:337–354

    Article  CAS  Google Scholar 

  • Hayes MA, Smith IR, Rushmore TH, Crane TL, Thorn C, Kocal TE, Ferguson HW (1990) Pathogenesis of skin and liver neoplasms in white suckers from industrially polluted areas in Lake Ontario. Sci Total Environ 94:105–123

    Article  CAS  Google Scholar 

  • Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16:607–613

    Article  Google Scholar 

  • Hilscherova K, Kannan K, Kang YS, Holoubek I, Machala M, Masunaga S, Nakanishi J, Giesy JP (2001) Characterization of dioxin-like activity of sediments from a Czech river basin. Environ Toxicol Chem 20:2768–2777

    Article  CAS  Google Scholar 

  • Hinkle-Conn C, Fleeger JW, Gregg JC, Carman KR (1998) Effects of sediment-bound polycyclic aromatic hydrocarbons on feeding behavior in juvenile spot (Leiostomus xanthurus Lacepede: Pisces). J Exp Mar Biol Ecol 227:113–132

    Article  CAS  Google Scholar 

  • Hoess S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158:2999–3010

    Article  CAS  Google Scholar 

  • Hoke RA, Prater BL (1980) Relationship of percent mortality of four species of aquatic biota from 96-hour sediment bioassays of five Lake Michigan harbors and elutriate chemistry of the sediments. Bull Environ Contam Toxicol 25:394–399

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T (2000) Cytotoxicity of settling particulate matter and sediments of the Neckar river (Germany) during a winter flood. Environ Toxicol Chem 19:528–534

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Olsman H, Halldin K, Bavel VB, Brack W, Tysklind M, Engwall M, Braunbeck T (2002) Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the river Neckar. Ecotoxicology 11:323–336

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, Konig N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3(3):197–207

    Article  Google Scholar 

  • Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection assay using isolated hepatocytes of rainbow trout—deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Environ Sci Pollut Res 12:347–360

    Article  CAS  Google Scholar 

  • Hopkins WA, Snodgrass JW, Staub BP, Jackson BP, Congdon JD (2003) Altered swimming performance of a benthic fish (Erimyzon sucetta) exposed to contaminated sediments. Arch Environ Contam Toxicol 44:383–389

    Article  CAS  Google Scholar 

  • Husøy A, Myers MS, Goksøyr A (1996) Cellular localization of cytochrome P450 (CYPl A) induction and histology in Atlantic cod (Gadus morhua L.) and European flounder (Platichthys flesus) after environmental exposure to contaminants by caging in Sørfjorden, Norway. Aquat Toxicol 36:53374

    Article  Google Scholar 

  • Huuskonen SE, Ristola TE, Tuvikene A, Hahn ME, Kukkonen JVK, Lindström-Seppa P (1998) Comparison of two bioassays, a fish liver cell line (PLHC-1) and a midge (Chironomus riparius), in monitoring freshwater sediments. Aquat Toxicol 44:47–67

    Article  CAS  Google Scholar 

  • Huuskonen SE, Tuvikene A, Trapido M, Fent K, Hahn ME (2000) Cytochrome P4501A induction and porphyrin accumulation in PLHC-1 fish cells exposed to sediment and oil shale extracts. Arch Environ Contam Toxicol 38:59–69

    Article  CAS  Google Scholar 

  • Ingersoll CG, Ankley GT, Benoit DA, Brunson EL, Burton GA, Dwyer FJ (1995) Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: a review of methods and applications. Environ Toxicol Chem 14:1885–1194

    Article  CAS  Google Scholar 

  • Inzunza B, Orrego R, Penalosa M, Gavilan JF, Barra R (2006) Analysis of CYP4501A1, PAHs metabolites in bile, and genotoxic damage in Oncorhynchus mykiss exposed to Biobio river sediments, Central Chile. Ecotoxicol Environ Saf 65:242–251

    Article  CAS  Google Scholar 

  • Jimenez-Tenorio N, Morales-Caselles C, Kalman J, Salamanca MJ, de Canales MLG, Sarasquete C, Del Valls TA (2007) Determining sediment quality for regulatory purposes using fish chronic bioassays. Environ Int 33:474–480

    Article  Google Scholar 

  • Kammann U (2007) PAH metabolites in bile fluids of Dab (Limanda limanda) and flounder (Platichthys flesus): spatial distribution and seasonal changes. Environ Sci Pollut Res 14:102–108

    Article  CAS  Google Scholar 

  • Kammann U, Riggers JC, Theobald N, Steinhart H (2000) Genotoxic potential of marine sediments from the North Sea. Mutat Res 467:161–168

    CAS  Google Scholar 

  • Kammann U, Bunke M, Steinhart H, Theobold N (2001) A permanent fish cell line (EPC) for genotoxicity testing of marine sediments with the comet assay. Mutat Res 498:67–77

    CAS  Google Scholar 

  • Kammann U, Biselli S, Hühnerfuss H, Reineke N, Theobald N, Vobach M, Wosniok W (2004) Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test. Environ Pollut 132:279–287

    Article  CAS  Google Scholar 

  • Kammann U, Biselli S, Reineke N, Wosniok W, Danischewski D, Hühnerfuss H, Kinder A, Sierts-Herrmann A, Theobald N, Vahl H-H, Vobach M, Westendorf J, Steinhart H (2005) Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea. J Soils Sediments 5:225–232

    Article  Google Scholar 

  • Kammann U, Lang T, Berkau AJ, Klempt M (2008) Biological effect monitoring in dab (Limanda limanda) using gene transcript of CYP1A1 or EROD—a comparison. Environ Sci Pollut Res 15:600–605

    Article  Google Scholar 

  • Karlsson J, Sundberg AG, Grunder K, Eklund B, Breitholtz M (2008) Hazard identification of contaminated sites—ranking potential toxicity of organic sediment extracts in crustacean and fish. J Soils Sediments 8:263–274

    Article  CAS  Google Scholar 

  • Keiter S, Rastall A, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter, and water samples in the Upper Danube river. A pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res 13:308–319

    Article  CAS  Google Scholar 

  • Keiter S, Grund S, van Bavel B, Hagberg J, Engwall M, Kammann U, Klempt M, Manz W, Olsman H, Braunbeck T, Hollert H (2008) Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube River. Anal Bioanal Chem 390:2009–2019

    Article  CAS  Google Scholar 

  • Keiter S, Peddinghaus S, Feiler U, von der Goltz B, Hafner C, Ho NY, Rastegar S, Otte JC, Ottermanns R, Reifferscheid G, Strähle U, Braunbeck T, Hammers-Wirtz M, Hollert H (2010) DanTox – a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. J Soils Sediments 10(4):714–717

    Article  CAS  Google Scholar 

  • Kemble NE, Brumbaugh WG, Brunson EL, Dwyer FJ, Ingersoll CG, Monda DP, Woodward DF (1994) Toxicity of metal-contaminated sediments from the Upper Clark Fork River, Montana, to aquatic invertebrates and fish in laboratory exposures. Environ Toxicol Chem 13:1985–1997

    Article  CAS  Google Scholar 

  • Kilemade MF, Hartl MGJ, Sheehan D, Mothersill C, vanPelt F, O’Halloran J, O’Brien N (2004) Genotoxicity of field-collected inter-tidal sediments from Cork Harbour, Ireland to juvenile turbot (Scophthalmus maximus). Environ Mol Mutagen 44:56–64

    Article  CAS  Google Scholar 

  • Kilemade M, Hartl MF, O’Halloran J, O’Brien NM, Sheehan D, Mothersill C, vanPelt FNAM (2009) Effects of contaminated sediment from Cork Harbour, Ireland on the cytochrome P450 system of turbot. Ecotoxicol Environ Saf 72:747–755

    Article  CAS  Google Scholar 

  • Kimmel C, Ballard W, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  Google Scholar 

  • Kinani S, Bouchonnet S, Creusot N, Bourcier S, Balaguer P, Porcher J-M, Ait-Aissa S (2010) Bioanalytical characterization of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers. Environ Pollut 158:74–83

    Article  CAS  Google Scholar 

  • Kinder A, Sierts-Herrmann A, Biselli S, Heinzel N, Hühnerfuss H, Kammann U, Reineke N, Theobald N, Steinhart H (2007) Expression of heat shock protein 70 in a permanent cell line (EPC) exposed to sediment extracts from the North Sea and the Baltic Sea. Mar Environ Res 63:506–515

    Article  CAS  Google Scholar 

  • Klobucar GIV, Stambuk A, Pavlica M, Peric MS, Hackenberger BK, Hylland K (2010) Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio). Ecotoxicology 19:77–84

    Article  CAS  Google Scholar 

  • Klumpp DW, Humphrey C, Huasheng H, Tao F (2002) Toxic contaminants and their biological effects in coastal waters of Xiamen, China. II. Biomarkers and embryo malformation rates as indicators of pollution stress in fish. Mar Pollut Bull 44:761–769

    Article  CAS  Google Scholar 

  • Kocan RM, Sabo KM, Landolt ML (1985) Cytotoxicity/genotoxicity: the application of cell culture techniques to the measurement of marine sediment pollution. Aquat Toxicol 6:165–177

    Article  CAS  Google Scholar 

  • Kosmehl T (2007) Molecular biomarkers in zebrafish embryos: towards a more realistic approach in sediment assessment. Inaugural dissertation. University of Heidelberg, 271 pp

  • Kosmehl T, Krebs F, Manz W, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine river sediment extracts using the permanent cell lines RTG-2 and RTL-W1 in the comet assay and Ames assay. J Soils Sediments 4:84–94

    Article  CAS  Google Scholar 

  • Kosmehl T, Krebs F, Manz W, Braunbeck T, Hollert H (2007) Differentiation between bioavailable and total hazard potential of sediment induced DNA fragmentation as measured by the comet assay with zebrafish embryos. J Soils Sediments 7:377–387

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res 650:1–14

    CAS  Google Scholar 

  • Krasnov A, Afanasyev S, Oikari A (2007) Hepatic responses of gene expression in juvenile brown trout (Salmo trutta lacustris) exposed to three model contaminants applied singly and in combination. Environ Toxicol Chem 26:100–109

    Article  CAS  Google Scholar 

  • Kristensen P (1995) Sensitivity of embryos and larvae in relation to other stages in the life cycle of fish: a literature review. In: Müller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. FAO, Oxford, pp 155–166

    Google Scholar 

  • Küster E, Altenburger R (2008) Oxygen decline in biotesting of environmental samples—is there a need for consideration in the acute zebrafish embryo assay? Environ Toxicol 23:745–750

    Article  CAS  Google Scholar 

  • Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio, in fisheries research: a literature review. J Fish Biol 10:121–173

    Article  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck Th (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol Part C 149:196–209

    CAS  Google Scholar 

  • Landolt ML, Kocan RM (1984) Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes. Helgol Meersunters 37:479–491

    Article  Google Scholar 

  • Lange M, Gebauer W, Markl J, Nagel R (1995) Comparison of testing acute toxicity on embryo of zebrafish, Brachydanio rerio and RGT-2 cytotoxicity as possible alternatives to the acute fish test. Chemosphere 30:2087–2102

    Article  CAS  Google Scholar 

  • Larkin P, Folmar LC, Hemmer MJ, Poston AJ, Lee HS, Denslow ND (2002) Array technology as a tool to monitor exposure of fish to xenoestrogens. Mar Environ Res 54:395–399

    Article  CAS  Google Scholar 

  • Leaver MJ, Diab A, Boukouvala E, Williams TD, Chipman JK, Moffat CF, Robinson CD, George SG (2010) Hepatic gene expression in flounder chronically exposed to multiply polluted estuarine sediment: absence of classical exposure ‘biomarker’ signals and induction of inflammatory, innate immune and apoptotic pathways. Aquat Toxicol 96:234–245

    Article  CAS  Google Scholar 

  • LeBlanc GA, Suprenant DC (1985) A method of assessing the toxicity of contaminated freshwater sediments. In: Cardwell RD, Purdy R, Bahner RC (eds) Aquatic toxicology and hazard assessment seventh symposium STP 854. American Society for Testing and Materials, Philadelphia, pp 269–283

    Chapter  Google Scholar 

  • Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114:4–9

    CAS  Google Scholar 

  • Lie KK, Lanzen A, Breilid H, Olsvik PA (2009) Gene expression profiling in Atlantic cod (Gadius morhua L.) from two contaminated sites using a custom-made cDNA microarray. Environ Toxicol Chem 28:1711–1721

    Article  CAS  Google Scholar 

  • Liss W, Ahlf W (1997) Evidence from whole-sediment, pore water, and elutriate testing in toxicity assessment of contaminated sediments. Ecotoxicol Environ Saf 36:140–147

    Article  CAS  Google Scholar 

  • Louiz I, Kinani S, Gouze ME, Ben-Attia M, Menif D, Bouchonnet S, Porcher JM, Ben-Hassine OK, Ait-Aissa S (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Total Environ 402:318–329

    Article  CAS  Google Scholar 

  • Luckenbach T, Kilian M, Triebskorn R, Oberemm O (2001) Fish early life stage tests as a tool to assess embryotoxic potentials in small streams. J Aquat Ecosyst Stress Recovery 8:355–370

    Article  CAS  Google Scholar 

  • Luckenbach T, Kilian M, Triebskorn R, Oberemm A (2003) Assessment of the developmental success of brown trout (Salmo trutta f. fario L.) embryos in two differently polluted streams in Germany. Hydrobiologia 490:53–62

    Article  Google Scholar 

  • Mac MJ, Noguchi GE, Hesselberg RJ, Edsall CD, Shoesmith JA, Bowker JD (1990) A bioaccumulation bioassay for freshwater sediments. Environ Toxicol Chem 9:1405–1414

    Article  CAS  Google Scholar 

  • Magwood S, George S (1996) In vitro alternatives to whole animal testing. Comparative cytotoxicity studies of divalent metals in established cell lines derived from tropical and temperate water fish species in a neutral red assay. Mar Environ Res 42:37–40

    Article  CAS  Google Scholar 

  • McCain BB, Hudgins HO, Gronlund WD, Hawkes JW, Brown DW, Myers MS, Vandermuelen JH (1978) Bioavailability of crude oil from experimentally oiled sediments to English sole (Parophrys vetulus) and pathological consequences. J Fish Res Board Can 35:657–664

    CAS  Google Scholar 

  • Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CEW, Reifferscheid G, Stürzenbaum SR (2009) Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160–174

    Article  CAS  Google Scholar 

  • Metcalfe CD, Balch GC, Cairns VW, Fitzsimons JD (1990) Carcinogenic and genotoxic activity of extracts from contaminated sediments in Western Lake Ontario. Sci Total Environ 94:125–141

    Article  CAS  Google Scholar 

  • Michallet-Ferrier P, Ait-Aissa S, Balaguer P, Dominik J, Douglas Haffner G, Pardos M (2004) Assessment of estrogen (ER) and aryl hydrocarbon receptor (AhR) mediated activities in organic sediment extracts of the Detroit river, using in vitro bioassays based on human MELN and teleost PLHC-1 cell lines. J Great Lakes Res 30:82–92

    Article  CAS  Google Scholar 

  • Miller KM, Maclean N (2008) Teleost microarrays: development in a broad phylogenetic range reflecting diverse applications. J Fish Biol 72:2039–2050

    Article  CAS  Google Scholar 

  • Mondon JA, Duda S, Nowak BF (2001) Histological growth and 7-ethoxyresorufin-o-deethylase (EROD) activity responses of greenback flounder Rhombosolea tapirina to contaminated marine sediment and diet. Aquat Toxicol 54:231–247

    Article  CAS  Google Scholar 

  • Nagel R (2002) DarT: the embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX: Alternativen zu Tierexperimenten 19:38–48

    Google Scholar 

  • Nagler JJ, Cyr DG (1997) Exposure of male American plaice (Hippoglossoides platessoides) to contaminated marine sediments decreases the hatching success of their progeny. Environ Toxicol Chem 16:1733–1738

    Google Scholar 

  • Nendza M (2002) Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere 48:865–883

    Article  CAS  Google Scholar 

  • Netzband A, Brils J, Brauch HJ et al (2007) Sediment management: an essential element of river basin management plans. J Soils Sediments 7:117–132

    Article  Google Scholar 

  • Ni Shuilleabhain S, Davoren M, Mothersill C, Sheehan D, Hartl MGJ, Kilemade M, O’Brien NM, O’Halloran J, Van Pelt FNAM, Lyng FM (2005) Identification of a multixenobiotic resistance mechanism in primary cultured epidermal cells from Oncorhynchus mykiss and the effects of environmental complex mixtures on its activity. Aquat Toxicol 73:115–127

    Article  CAS  Google Scholar 

  • Oberemm A (2000) The use of a refined zebrafish embryo bioassay for the assessment of aquatic toxicity. Lab Anim 29:32–40

    Google Scholar 

  • OECD (Organization for Economic Cooperation and Development) (1992) Guidelines for testing of chemicals 210: Fish, Early Life Stage Toxicity Test. Paris, France

  • OECD (Organization for Economic Cooperation and Development (1998) OECD guidelines for the testing of chemicals. Section 2: effects on biotic systems Test No. 212: fish, short-term toxicity test on embryo and sac-fry stages. Paris, France

  • OECD (Organization for Economic Cooperation and Development) (2001) Guidelines for Testing of Chemicals, Proposal for a new Guideline 218, Sediment-Water Chironomid Toxicity Test Using Spiked Sediment. Paris, France

  • OECD (Organization for Economic Cooperation and Development) (2006) Guideline for testing of chemicals; Draft Proposal for a new guideline, Fish Embryo Toxicity (FET) Test

  • Ozoh PTE (1979) Malformations and inhibitory tendencies induced to Brachydanio rerio (Hamilton-Buchanan) eggs and larvae due to exposures in low concentrations of lead and copper ions. Bull Environ Contam Toxicol 21:668–675

    Article  CAS  Google Scholar 

  • Park JW, Tompsett AR, Zhang X, Newsted JL, Jones PD, Au DWT, Kong R, Wu RSS, Giesy JP, Hecker M (2009) Advanced fluorescence in situ hybridization to localize and quantify gene expression in Japanese medaka (Oryzias latipes) exposed to endocrine-disrupting compounds. Environ Toxicol Chem 28:1951–1962

    Article  CAS  Google Scholar 

  • Perkins EJ, Lotufo GR (2003) Playing in the mud-using gene expression to assess contaminant effects on sediment dwelling invertebrates. Ecotoxicology 12:453–456

    Article  CAS  Google Scholar 

  • Powers DA (1989) Fish as model systems. Science 246:352–358

    Article  CAS  Google Scholar 

  • Power EA, Munkitittrick KR, Chapman PM (1992) An ecological impact assessment framework for decision-making related to sediment quality. Standard Technical Pub. 1124. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Quiros L, Pina B, Sole M, Blasco J, Lopez MA, Riva MC, Barcelo D, Raldua D (2007) Environmental monitoring by gene expression biomarkers in Barbus graellsii: laboratory and field studies. Chemosphere 67:1144–1154

    Article  CAS  Google Scholar 

  • Roberts MH, Hargis WJ Jr, Strobel CJ, De Lisle PF (1989) Acute toxicity of PAH contaminated sediments to the estuarine fish, Leiostomus xanthurus. Bull Environ Contam Toxicol 42:142–149

    Article  CAS  Google Scholar 

  • Roberts AP, Oris JT, Burton GA Jr, Clements WH (2005) Gene expression in caged fish as a first-tier indicator of contaminant exposure in streams. Environ Toxicol Chem 24:3092–3098

    Article  CAS  Google Scholar 

  • Rocha PS, Luvizotto GL, Kosmehl T, Böttcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tiete River (Sao Paulo, Brazil): In vitro comet assay versus in situ micronucleus assay studies. Ecotoxicol Environ Saf 72:1842–1848

    Article  CAS  Google Scholar 

  • Rodgers PW, Kieser MS, Peterson GW (1985) Summary of the existing status of the upper great lakes connecting channels data. Limno-Tech, Ann Arbor

    Google Scholar 

  • Rosenthal H, Alderdice DF (1976) Sublethal effects of environmental stressors, natural and pollutional, on marine fish eggs and larvae. J Fish Res Board Can 33:2047–2065

    CAS  Google Scholar 

  • Savage WK, Quimby FW, DeCaprio AP (2002) Lethal and sublethal effects of polychlorinated biphenyls on Rana sylvatica tadpoles. Environ Toxicol Chem 21:168–174

    CAS  Google Scholar 

  • Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  • Schlenk D, Sapozhnikova Y, Irwin M, Xie L, Hwang W, Reddy S, Brownawell BJ, Armstrong J, Kelly M, Montagne DE (2005) In vivo bioassay-guided fractionation of marine sediment extracts from the Southern California Bight, USA, for estrogenic activity. Environ Toxicol Chem 24:2820–2826

    Article  CAS  Google Scholar 

  • Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res 15:394–404

    Article  CAS  Google Scholar 

  • Schubauer-Berigan MK, Ankley GT (1991) The contribution of ammonia, metals and nonpolar organic compounds to the toxicity of sediment interstitial water from an Illinois River tributary. Environ Toxicol Chem 10:925–939

    Article  CAS  Google Scholar 

  • Schulte C, Nagel R (1994) Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results. ATLA 22:12–19

    Google Scholar 

  • Segner H (1998) Isolation and primary culture of teleost hepatocytes. Comp Biochem Physiol 120:71–81

    Article  Google Scholar 

  • Segner H (2004) Cytotoxicity assay with fish cells as an alternative to the acute lethality assay with fish. ATLA 32:375–382

    CAS  Google Scholar 

  • Seiler TB, Schulze T, Hollert H (2008) The risk of altering soil and sediment samples upon extract preparation for analytical and bio-analytical investigations—a review. Anal Bioanal Chem 390:1975–1985

    Article  CAS  Google Scholar 

  • Seitz N, Böttcher M, Keiter S, Kosmehl T, Manz W, Hollert H, Braunbeck T (2007) A novel statistical approach for the evaluation of comet assay data. Mutat Res 652:38–45

    Google Scholar 

  • SETAC-Europe (1991) Guidance document on testing procedures for pesticides in freshwater static microcosms. Workshop 3-4. July 1991. Monks Wood Exp. St., UL

  • Skidmore JF (1965) Resistance to zinc sulphate of the zebrafish (Brachydanio rerio Hamilton–Buchanan) at different phases of its life history. Ann Appl Biol 56:47–53

    Article  CAS  Google Scholar 

  • Sleiderink HM, Beyer J, Scholtens E, Godsoyr A, Nieywenhuize J, Van Liere JM, Boon JP (1995) Influence of temperature and polyaromatic contaminants on CYP1A levels in North Sea dab (Limanda limanda). Aquat Toxicol 32:189–209

    Article  CAS  Google Scholar 

  • Snell TW, Brogdon SE, Morgan MB (2003) Gene expression profiling in ecotoxicology. Ecotoxicology 12:475–483

    Article  CAS  Google Scholar 

  • Solomon KR, Sibley P (2002) New concepts in ecological risk assessment: where do we go from here? Mar Pollut Bull 44:279–285

    Article  CAS  Google Scholar 

  • Sonstegard RA (1977) Environmental carcinogenesis studies in fishes of the Great Lakes of North America. Ann NY Acad Sci 298:261–269

    Article  Google Scholar 

  • Sprague JB (1969) Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Wat Res 3:793–821

    Article  CAS  Google Scholar 

  • Steinberg CEW, Stürzenbaum SR, Menzel R (2008) Genes and environment—striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400:142–161

    Article  CAS  Google Scholar 

  • Strecker R, Seiler TB, Hollert H, Braunbeck T (2008) Oxygen requirements of zebrafish (Danio rerio) embryos in embryotoxicity tests with environmental samples. Proceedings Annual Meeting SETAC-GLB Frankfurt 23–26 Sept 2008

  • Strmac M, Braunbeck T (2000) Isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as a tool to discriminate between differently contaminated small river systems. Toxicol in Vitro 14:361–377

    Article  CAS  Google Scholar 

  • Strmac M, Oberemm A, Braunbeck T (2002) Assessment of sediment toxicity to early life stages of fish: effects of sediments from differently polluted small rivers on zebrafish (Danio rerio) embryos and larvae. J Fish Biol 61:24–38

    Article  Google Scholar 

  • Sundberg H, Ishaq R, Åkerman G, Tjärnlund U, Zebühr Y, Linderoth M, Broman D, Balk L (2005) A bio-effect directed fractionation study for toxicological and chemical characterization of organic compounds in bottom sediment. Toxicol Sci 84:63–72

    Article  CAS  Google Scholar 

  • Tanneberger K, Kramer NI, Scholz S, Bols NC, Lee LEJ, Hafner C, Hermens JLM, Schirmer K (2008) CEIISens-Eco8: development of a strategy to replace acute fish toxicity tests. Annual EPAA Conference. Research into alternative approaches (3Rs) in regulatory testing: are we on the right track? 03.11.2008. Brussels, Belgium

  • Teles M, Santos MA, Pacheco M (2004) Responses of European eel (Anguilla anguilla L.) in two polluted environments: in situ experiments. Ecotoxicol Environ Saf 58:373–378

    Article  CAS  Google Scholar 

  • Tollefsen KE, Bratsberg E, Boyum O, Finne EF, Gregersen IK, Hegseth M, Sandberg C, Hylland K (2006) Use of fish in vitro hepatocyte assays to detect multi-endpoint toxicity in Slovenian river sediments. Mar Environ Res 62:S356–S359

    Article  CAS  Google Scholar 

  • Traven L, Zaja R, Loncar J, Smital T, Micovic V (2008) CYP1A induction potential and the concentration of priority pollutants in marine sediment samples—in vitro evaluation using the PLHC-1 fish hepatoma cell line. Toxicol in Vitro 22:1648–1656

    Article  CAS  Google Scholar 

  • Travis CC, Bishop WE, Clarke DP (2003) The genomic revolution: what does it mean for human and ecological risk assessment? Ecotoxicology 12:489–495

    Article  CAS  Google Scholar 

  • USEPA U.S Environmental Protection Agency (1977) Ecological evaluation of proposed discharge of dredged material into ocean waters. Environmental Effects Laboratory, US Army Engineer Waterways Experiment Station, Vicksburg

    Google Scholar 

  • USEPA U.S Environmental Protection Agency (1981) Development of bioassay procedures for defining pollution of harbour sediments EPA 600/S3-81-025. Duluth, MN

  • USEPA U.S Environmental Protection Agency (1994) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-94/024. Duluth, MN

  • USEPA U.S. Environmental Protection Agency (2001) Draft report on the incidence and severity of sediment contamination in surface waters of the United States, national sediment quality survey. Washington DC: USEPA. EPA-823-F-01-031

  • Van Beelen P (2003) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53:795–808

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Vigano L, Arillo A, DeFlora S, Lazorchak J (1995) Evaluation of microsomal and cytosolic biomarkers in a 7-day larval trout sediment toxicity test. Aquat Toxicol 31:189–202

    Google Scholar 

  • Vigano L, Arillo A, Falugi C, Melodia F (1998) Histochemical and biochemical markers in trout larvae exposed to river sediments. Chemosphere 37:2797–2807

    Article  CAS  Google Scholar 

  • Vigano L, Arillo A, Falugi C, Melodia F, Polesello S (2001) Biomarkers of exposure and effect in flounder (Platichthys flesus) exposed to sediments of the Adriatic Sea. Mar Pollut Bull 42:887–894

    Article  CAS  Google Scholar 

  • Völker D, Vess C, Tillmann M, Nagel R, Otto GW, Geisler R, Schirmer K, Scholz S (2007) Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquat Toxicol 81:355–364

    Article  CAS  Google Scholar 

  • von Westernhagen H, Dethlefsen V (1997) The use of malformations in pelagic fish embryos for pollution assessment. Hydrobiologia 352:241–250

    Article  Google Scholar 

  • Wedekind C, von Siebenthal B, Gingold R (2007) The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues. Environ Pollut 148:385–389

    Article  CAS  Google Scholar 

  • Weil M, Scholz S, Zimmer M et al (2009) Gene expression analysis in zebrafish embryos: a potential approach to predict effect concentrations in the fish early life stage test. Environ Toxicol Chem 28:1970–1978

    Article  CAS  Google Scholar 

  • Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). 3 rd edition.USA-Eugene: University of Oregon Press, Institute of Neuroscience

  • Williams TD, Gensberg K, Minchin SD, Chipman JK (2003) A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat Toxicol 65:141–157

    Article  CAS  Google Scholar 

  • Wölz J, Engwall M, Maletz S, Olsman Takner H, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonst activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance, approach using in vitro methods and chemical analysis. Environ Sci Pollut Res 15:536–553

    Article  CAS  Google Scholar 

  • Wölz J, Borck D, Witt G, Hollert H (2009) Ecotoxicological characterization of sediment cores from the western Baltic Sea (Mecklenburg Bight) using GC-MS and in vitro biotests. J Soils Sediments 9:400–410

    Article  CAS  Google Scholar 

  • Wolz J, Hudjetz S, Roger S, Brinkmann M, Schmidt B, Schaffer A, Kammann U, Lennartz G, Hecker M, Schuttrumpf H, Hollert H (2009) In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. J Soils Sediments 9:1–5

    Article  CAS  Google Scholar 

  • Yang LX, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Muller F, Strahle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Repro Toxicol 28:245–253

    Article  CAS  Google Scholar 

  • Zapata-Perez O, Sima-Alvarez R, Norena-Barroso E, Guemes J, Gold-Bauchot G, Ortega A, Albores-Medina A (2000) Toxicity of sediments from Bahia de Chetumal, Mexico, as assessed by hepatic EROD induction and histology in nile tilapia Oreochromis niloticus. Mar Environ Res 50:385–391

    Article  CAS  Google Scholar 

  • Zhou B, Liu C, Wang J, Lam PKS, Wu SS (2006) Primary cultured cells as sensitive in vitro model for assessment of toxicants-comparison to hepatocytes and gill epithelia. Aquat Toxicol 80:109–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been generously supported by a Georg Forster Research Fellowship (Alexander von Humboldt Foundation) granted to the first author. We are also indebted to the two anonymous reviewers and to the subject editor Dr Ellen Petticrew for the valuable remarks and comments that have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arnold V. Hallare or Henner Hollert.

Additional information

Responsible editor: Ellen Petticrew

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallare, A.V., Seiler, TB. & Hollert, H. The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11, 141–173 (2011). https://doi.org/10.1007/s11368-010-0302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0302-7

Keywords

Navigation