Skip to main content
Log in

Mercury content in volcanic soils across Europe and its relationship with soil properties

  • SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Volcanoes are a natural source of Hg, whose deposition can occur in neighbouring soils. This study examines the role of soil compounds in the geochemical behaviour of total Hg (Hg T ) in volcanic soils. An estimation of Hg from lithological origin is also assessed to ascertain the relevance of other sources in Hg T accumulated in volcanic soils.

Materials and methods

Twenty soil profiles developed from volcanic materials and located across European volcanic regions were selected for this study. The general characterisation of soils included total C, N and S content and Al and Fe distribution determined using traditional methods. The total content of major and trace elements was determined using X-ray fluorescence spectrometry (XRF). The total Hg content of soil samples was measured with atomic absorption spectroscopy using a solid sample Hg analyser. Lithogenic Hg was calculated in the uppermost soil considering Al, Ti and Zr as conservative reference elements. Several statistical analyses (Pearson correlations, Mann–Whitney tests, stepwise multiple regressions and analysis of variance) were carried to ascertain the role of soil parameters and characteristics in the Hg accumulation in volcanic soils.

Results and discussion

The total Hg ranged from 3.0 to 640 ng g–1 and it tended to diminish with soil depth except in some soils where the lithological discontinuities resulted in high values of Hg T in the Bw horizons. More than 75% of the Hg T variance could be attributed to distinct contents of organic matter, Al– and Fe–humus complexes and inorganic non-crystalline Al and Fe compounds in “andic”, “vitric” and “non-andic” horizons. The degree of pedogenetic soil evolution notably influenced the Hg T soil content. Lithogenic Hg (1.6–320 ng g–1) was correlated with Al–humus complexes and clay content, suggesting the relevance of pedogenetic processes, whereas exogenic Hg (1.4–180 ng g–1) was correlated with total C and cation exchange capacity, indicating an origin predominantly from atmospheric deposition.

Conclusions

The total Hg content of soils from volcanic areas demonstrated the role of volcanism as a source of this metal. The degree of evolution of the volcanic soils and their typical compounds (metal–humus complexes, organic matter and inorganic non-crystalline Al and Fe compounds) are involved in Hg accumulation. The mercury accumulated in the analysed soils is a mixture of the Hg that is present in volcanic soil parent material and the Hg that is deposited from the atmospheric pool, which combines natural and anthropogenic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alriksson A (2001) Regional variability of Cd, Hg, Pb and C concentrations in different horizons of Swedish forest soils. Water Air Soil Pollut: Focus 1:325–341

    Article  CAS  Google Scholar 

  • Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, García-Rodeja E (2007) Soils of volcanic regions in Europe. Springer, Berlin, p 644

    Book  Google Scholar 

  • Bargagli R, Barghigiani C, Siegel BZ, Siegel SM (1991) Trace metal anomalies in surface soils and vegetation on two active island volcanoes: Stromboli and Vulcano (Italy). Sci Total Environ 102:209–222

    Article  CAS  Google Scholar 

  • Barghigiani C, Bargagli R, Gioffré D (1988) Mercury in the environment of the Mt. Etna Volcanic Area Environ Technol Lett 9:239–244

    CAS  Google Scholar 

  • Barghigiani C, Bargagli R, Siegel BZ, Siegel SM (1990) A comparative study of mercury distribution on the aeolian volcanoes, Vulcano and Stromboli. Water Air Soil Pollut 53:179–188

    Article  CAS  Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1981) Soil Bureau Laboratory Methods: A. Methods for Chemical Analysis of Soils. New Zealand Soil Bureau Scientific Report, Lower Hutt pp 44–45

  • Buurman P, García-Rodeja E, Martínez-Cortizas A, van Doesburg JDJ (2004) Stratification of parent material in European volcanic and related soils studied by laser diffraction grain-size and chemical analyses. Catena 56:127–144

    Article  CAS  Google Scholar 

  • Cheburkin AK, Shotyk W (1996) An energy-dispersive miniprobe multi-element analyzer (EMMA) for direct analysis of Pb and other trace elements in peats. Fresenius J Anal Chem 354:688–691

    CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Doelsch E, Van de Kerchove V, Saint Macary H (2006) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134:119–134

    Article  CAS  Google Scholar 

  • FAO, ISRIC, ISSS (1998) World Reference Base for Soil Resources. World Soil Resources Report 84. FAO, Rome

  • FAO-ISRIC (1990) Guidelines for soil description, 3rd edn. Soil Resources, Management and Conservation Service, Land and Water Development Division, FAO, Rome

    Google Scholar 

  • Farella N, Lucotte M, Davidson R, Daigle S (2006) Mercury release from deforested soils triggered by base cation enrichment. Sci Total Environ 368:19–29

    Article  CAS  Google Scholar 

  • Ferrara R, Mazzolai B, Lanzillota E, Nucaro E, Pirrone N (2000) Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci Total Environ 259:115–121

    Article  CAS  Google Scholar 

  • Fieldes M, Perrot KW (1966) The nature of allophane in soils: 3. Rapid field and laboratory test for allophane. N Zealand J Soil Sci 9:629–639

    Google Scholar 

  • Fiorentino JC, Enzweiler J, Angélica RS (2011) Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: evidence of external input. Water Air Soil Pollut 221:63–75

    Article  CAS  Google Scholar 

  • García-Rodeja E, Silva BM, Macías F (1987) Andosols developed from non volcanic materials in Galicia, NW Spain. J Soil Sci 38:573–591

    Article  Google Scholar 

  • García-Rodeja E, Nóvoa JC, Pontevedra X, Martínez-Cortizas A, Buurman P (2004) Aluminium fractionation through selective dissolution techniques in European volcanic soils. Catena 56:155–183

    Article  Google Scholar 

  • García-Rodeja E, Nóvoa Muñoz JC, Pontevedra X, Martínez-Cortizas A, Buurman P (2007) Aluminium and iron fractionation of European volcanic soils by selective dissolution techniques. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, García-Rodeja E (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 325–351

    Chapter  Google Scholar 

  • Grimaldi C, Grimaldi M, Guedron S (2008) Mercury distribution in tropical soil profiles related to origin of mercury and soil processes. Sci Total Environ 401:121–129

    Article  CAS  Google Scholar 

  • Guedron S, Grimaldi C, Chauvel C, Spadini L, Grimaldi M (2006) Weathering versus atmospheric contributions to mercury concentrations in French Guiana soils. Appl Geochem 21:2010–2022

    Article  CAS  Google Scholar 

  • Guedron S, Grangeon S, Lanson B, Grimaldi M (2009) Mercury speciation in a tropical soil association, consequence of gold mining on Hg distribution in French Guiana. Geoderma 153:331–346

    Article  CAS  Google Scholar 

  • Gupta SK, Chen KY (1975) Partitioning of trace elements in selective fractions of nearshore sediments. Environ Lett 10:129–158

    Article  CAS  Google Scholar 

  • Gustin MS, Lindberg SE, Austin K, Coolbaugh M, Vette A, Zhang H (2000) Assessing the contribution of natural sources to regional atmospheric mercury budgets. Sci Total Environ 259:61–71

    Article  CAS  Google Scholar 

  • Hernández PA, Pérez NM, Salazar JML, Ferrell R, Álvarez CE (2004) Soil volatile mercury, boron and ammonium distribution at Cañadas caldera, Tenerife, Canary Islands, Spain. Appl Geochem 19:819–834

    Article  Google Scholar 

  • Hintelmman H, Harris R, Heyes A, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Rudd JWM, Scott KJ, St. Louis VL (2002) Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystems during the first year of the METAALICUS study. Environ Sci Technol 36:5034–5040

    Article  Google Scholar 

  • Hissler C, Probst JL (2006) Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Sci Total Environ 361:163–178

    Article  CAS  Google Scholar 

  • Holmgren GS (1967) A rapid citrato-ditionite extractable iron procedure. Soil Sci Soc Am Pro 31:210–211

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006. World Soil Resources Reports, No. 103. FAO, Rome. 2nd edn

  • Johansson K, Aastrup M, Andersson A, Bringmark L, Iverfeldt A (1991) Mercury in Swedish forest soils and waters. Assessment of critical load. Water Air Soil Pollut 56:267–281

    Article  CAS  Google Scholar 

  • Lin CJ, Pehkonen SO (1999) Aqueous phase reactions of mercury with free radicals and chlorine: implications for atmospheric mercury chemistry. Chemosphere 38:1253–1263

    Article  CAS  Google Scholar 

  • Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Hakanson L, Iverfeldt A, Meili M, Timm B (1991) Mercury in the Swedish environment. Water Air Soil Pollut 55:1–261

    Article  Google Scholar 

  • Madeira M, Auxtero E, Monteiro F, García-Rodeja E, Nóvoa-Muñoz JC (2007) Exchange complex properties of soils from a range or European volcanic areas. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, García-Rodeja E (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 369–385

    Chapter  Google Scholar 

  • Martínez Cortizas A, García-Rodeja E, Nóvoa Muñoz JC, Pontevedra Pombal X, Buurman P, Terribile F (2003) Distribution of some selected major and trace elements in four Italian soils developed from the deposits of the Gauro and Vico volcanoes. Geoderma 117:215–224

    Article  Google Scholar 

  • Martínez Cortizas A, Nóvoa JC, Pontevedra X, Taboada T, García-Rodeja E, Chesworth W (2007a) Elemental composition of reference European volcanic soils. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, García-Rodeja E (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 289–306

    Chapter  Google Scholar 

  • Martínez Cortizas A, Nóvoa JC, Pontevedra X, Taboada T, García-Rodeja E, Buurman P (2007b) Multivariate statistical analysis of chemical properties of European volcanis soils. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, García-Rodeja E (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 387–400

    Chapter  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochin Acta 58:3191–3198

    Article  CAS  Google Scholar 

  • Meijer EL, Buurman P (2003) Chemical trends in a perhumid soil catena on the Turrialba volcano (Costa Rica). Geoderma 117:185–201

    Article  CAS  Google Scholar 

  • Mizota C, van Reeuwijk LP (1989) Clay mineralogy and chemistry of soils formed under volcanic material in diverse climatic regions. Soil Monograph, vol. 2. ISRIC, 185 pp. Wageningen, The Netherlands

  • Nóvoa-Muñoz JC, Pontevedra-Pombal X, Martínez-Cortizas A, García-Rodeja E (2008) Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain). Sci Total Environ 394:303–312

    Article  Google Scholar 

  • Nriagu JO, Becker C (2003) Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci Total Environ 304:3–12

    Article  CAS  Google Scholar 

  • Obrist D (2007) Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry 85:119–123

    Article  CAS  Google Scholar 

  • Obrist D, Johnson DW, Lindberg SE, Luo Y, Hararuk O, Bracho R, Battles JJ, Dail DB, Edmonds RL, Monson RK, Ollinger SV, Pallardy SG, Pregitzer KS, Todd DE (2011) Mercury distribution across 14 U.S. forests. Part I: spatial patterns of concentrations in biomass, litter, and soils. Environ Sci Technol 45:3974–3981

    CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D (2006a) Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ 370:147–156

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006b) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063

    Article  CAS  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    Article  CAS  Google Scholar 

  • Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment: fact sheets for the geochemist and environmental scientist. Springer, Berlin

    Google Scholar 

  • Roulet M, Lucotte M, Saint-Aubin A, Tran S, Rhéault I, Farella N, De Jesus Da Silva E, Dezencourt J, Sousa Passos CJ, Santos Soares G, Guimarães JRD, Mergler D, Amorim M (1998) The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chao formation of the lower Tapajós River valley, Pará state, Brazil. Sci Total Environ 223:1–24

    Article  CAS  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 35:3089–3098

    Google Scholar 

  • Schuster E (1991) The behaviour of mercury in the soil with special emphasis on complexation and adsorption processes. A review of the literature. Water Air Soil Pollut 56:667–680

    Article  CAS  Google Scholar 

  • Schwesig D, Matzner E (2000) Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Sci Total Environ 260:213–223

    Article  CAS  Google Scholar 

  • Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF (2006) Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180

    Article  CAS  Google Scholar 

  • Skyllberg U, Westin MB, Meili M, Björn E (2009) Elevated concentrations of methyl mercury in streams after forest clear-cut: a consequence of mobilization from soil or new methylation? Environ Sci Technol 43:8535–8541

    Article  CAS  Google Scholar 

  • Taboada T, García C, Martínez-Cortizas A, Nóvoa JC, Pontevedra X, García-Rodeja E (2007) Chemical weathering of reference European volcanic soils. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, García-Rodeja E (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 307–323

    Chapter  Google Scholar 

  • Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471

    Article  CAS  Google Scholar 

  • Tomiyasu T, Okada M, Imura R, Sakamoto H (2003) Vertical variations in the concentration of mercury in soils around Sakurajima Volcano, Southern Kyushu, Japan. Sci Total Environ 304:221–230

    Article  CAS  Google Scholar 

  • Xin M, Gustin MS (2007) Gaseous elemental mercury exchange with low mercury containing soils: investigation of controlling factors. Appl Geochem 22:1451–1466

    Article  CAS  Google Scholar 

  • Zambardi T, Sonke JE, Toutain JP, Sortino F, Shinohara H (2009) Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet Sci Lett 277:236–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank all researchers involved in COST Action 622, especially the members of the Working Group for Soil Description and Sampling (F. Bartoli, A. Basile, M. Gerard, T. Jongmans, F. van Oort, O Arnalds and F. Terribile). S. Peña-Rodríguez acknowledges the financial support of CIA3 which was granted by FEDER founds through the programme of Consolidation and Arrangement of Research Units from Consellería de Educación (Xunta de Galicia). D. Fernández-Calviño is a recipient of an Anxeles Alvariño contract funded by the Consellería de Innovación e Industria (Xunta de Galicia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Nóvoa-Muñoz.

Additional information

Responsible editor: Jianming Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(DOC 46 kb)

ESM Table 2

(DOC 37 kb)

ESM Table S3

(DOC 52 kb)

ESM Table S4

(DOC 302 kb)

ESM Table S5

(DOC 248 kb)

ESM Table S6

(DOC 37 kb)

ESM Table S7

(DOC 64 kb)

ESM Fig. S1

(DOC 80 kb)

ESM Fig. S2

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña-Rodríguez, S., Pontevedra-Pombal, X., Fernández-Calviño, D. et al. Mercury content in volcanic soils across Europe and its relationship with soil properties. J Soils Sediments 12, 542–555 (2012). https://doi.org/10.1007/s11368-011-0468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0468-7

Keywords

Navigation