Skip to main content
Log in

Distribution of total mercury in coastal sediments from Jade Bay and its catchment, Lower Saxony, Germany

  • SEDIMENTS, SEC 1 • SEDIMENT QUALITY AND IMPACT ASSESSMENT • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Sediment cores provide a reliable record of mercury (Hg) contamination and can be used to study long-term Hg pollution and relevant environmental change. In the last hundred years, there were several events which may have contributed to the accumulation of Hg in Jade Bay and its catchment. This work was undertaken to assess the record in total Hg (THg) content in sediments of cores from Jade Bay and its catchment.

Materials and methods

A 5-m sediment core from Jade Bay, Lower Saxonian Wadden Sea, southern North Sea and a 12-m core from its catchment area (Wangerland, coastal zone of the Jade Bay) were used to study Hg contents in sediments. Total Hg, grain size distribution, aluminium (Al) and total organic carbon (TOC) were analysed on subsamples of both sediment cores. Total Hg was determined by oxygen combustion-gold amalgamation using DMA-80.

Results and discussion

As THg contents of the Jade Bay core were positively correlated to the sum of TOC and Al contents (r 2 = 0.86, p < 0.001), the Hg data were interpreted using a regional normalisation function with the sum of Al and TOC as the normalisation parameters. Total Hg contents of the Wangerland core were correlated better to Al contents (r 2 = 0.70, p < 0.001) than to the sum of TOC and Al contents (r 2 = 0.63, p < 0.05). Therefore, Hg contents in sediments of the Wangerland core were normalised to Al contents. Comparison between enrichment factors and the background range of the sediment cores suggested that Jade Bay was contaminated about 50 years ago, and that Wangerland, or the catchment area of Jade Bay, was contaminated about 300 years ago, if no diagenetic remobilization occurred.

Conclusions

Total Hg contents of both cores were low and of no concern to the aquatic environment of Jade Bay. The Hg record was in good agreement with the history of industrial development in the region; thus, Hg deposition could have occurred through atmospheric input, ammunition residues of the Second World War and volcanic emanations, as well as through diagenetic remobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AMAP/UNEP (2008) Technical background report to the global atmospheric mercury assessment. Arctic monitoring and assessment programme/UNEP Chemicals Branch, pp 159

  • Beck W, Evers J, Göbel M, Oehlinger G, Klapötke TM (2007) The crystal and molecular structure of mercury fulminate. Anorg Allg Chem 633:1417–1422

    Article  CAS  Google Scholar 

  • Biester H, Bindler R, Cortizas AM, Engstrom DR (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 41:4851–4860

    Article  CAS  Google Scholar 

  • Dellwig O, Bottcher ME, Lipinski M, Brumsack HJ (2002) Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany). Chem Geol 182:423–442

    Article  CAS  Google Scholar 

  • Dellwig O, Brumsack HJ (2000) Inorganic geochemistry of Holocene coastal deposits from NW Germany: an overview. http://oops.uni-oldenburg.de/volltexte/2000/408/pdf/chapter2-4.pdf. Accessed 19 Aug 2011

  • Egidius H (2011) Die Entstehung des Jadebusens. In: Der Jadebusen, Entstehung+Geschichte. Komregis-Verlag, Oldenburg, p 192

  • EY J (2010) B 114 Historisch-geographische Untersuchungen zur Deichgeschichte im Wangerland, Ldkr. Friesland. Nachrichten des Marschenrates zur Förderung der Forschung im Küstengebiet der Nordsee 47, 21–22, Wilhelmshaven

  • Gobell C, Macdonald RW, Smith JN (1999) Mercury profiles in sediments of the Arctic Ocean basins. Environ Sci Technol 33:4194–4198

    Article  Google Scholar 

  • Hagemann BP (1969) Development of the western part of the Netherlands during the Holocene. Geol Mijnbouw 48:373–388

    Google Scholar 

  • Hoselmann C, Streif H (1997) Bilanzierung der holozänen Sedimentakkumulation im niedersächsischen Küstenraum. J Ger Geol Soc 148:431–445

    Google Scholar 

  • Irion G (1994) Morphological, sedimentological and historical evolution of Jade Bay, Southern North Sea. Senkenbergiana marit 24:171–186

    Google Scholar 

  • Jin H, Liebezeit G, Ziehe D (2012) Distribution of total mercury in surface sediments of the western Jade Bay, Lower Saxonian Wadden Sea, Southern North Sea. Bull Environ Contam Toxicol 88:597–604

    Article  CAS  Google Scholar 

  • Kerndorff H, Schäfer A, Tobschall HJ (1979) Experimente zur Aufnahme von Hg2+-Ionen durch rezenten Nordsee-Schlick. Senckenbergiana marit 11:1–22, Frankfurt a. M

    CAS  Google Scholar 

  • Kunz H (1993) Klimaänderungen und ihre Folgen für Wasserhaushalt, Gewässernutzung und Gewässerschutz. In: Schellnhuber HJ, Sterr H (eds) Klimaänderung und Küste. Springer, Berlin, pp 97–136

    Chapter  Google Scholar 

  • Lamborg CH, Fitzgrrald WF, O’Donnell J, Torgerson T (2002) A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66:1105–1118

    Article  CAS  Google Scholar 

  • Liebezeit G (2002) Dumping and re-occurrence of ammunition on the German North Sea coast. In: Missiaen T, Henriet JP (eds) Chemical munition dump sites in coastal environments. Proceedings of the workshop on ‘Chemical munition dump sites in coastal environments’ (July 2001, Gent). OSTC, Brussels, pp 1–12

  • Little-Gadow S, Schäfer A (1974) Schwermetalle in den Sedimenten der Jade – Bestandsaufnahme und Vergleich mit der inneren Deutschen Bucht. Senckenbergiana marit 6:161–174, Frankfurt a. M

    CAS  Google Scholar 

  • Lockhart WL, Macdonald RW, Outridge PM, Wilkinson P, DeLaronde JB, Rudd JWM (2000) Tests of the fidelity of lake sediment core records of mercury deposition to known histories of mercury contamination. Sci Total Environ 260:171–180

    Article  CAS  Google Scholar 

  • Matty JM, Long DT (1995) Early diagenesis of mercury in the Laurentian Great Lakes. J Great Lakes Res 21:574–586

    Article  CAS  Google Scholar 

  • Melamed R, Castilhos Z, Ribeiro Jr. MG, Villas Bôas RC, Mauro JBN, Guimarães JRD, Coelho-Souza S (2001) Mechanisms of the mercury biogeochemical cycle: site specificity and data interpretation. Proceedings of NIMD Forum 2001—mercury research: today and tomorrow

  • Petzelberger BEM (1997) Geologische Untersuchungen zur Landschaftsgeschichte des jüngeren Holozäns in der ehemaligen Crildumer Bucht im Wangerland, Ldkr. Friesland. Probleme der Küstenforschung im südlichen Nordseegebiet 24:301–309

  • Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124

    Article  CAS  Google Scholar 

  • Rapsch HJ, Fischer U (2000) Munition im Fischernetz. Isensee Verlag, Oldenburg, p 80

    Google Scholar 

  • Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ Sci Technol 28:2233–2241

    Article  CAS  Google Scholar 

  • Roach AC (2005) Assessment of metals in sediments from Lake Macquarie, New South Wales, Australia, using normalization models and sediment quality guidelines. Marine Environ Research 59:353–472

    Google Scholar 

  • Schropp SJ, Lewis FG, Windom HL, Ryan JD, Calder FD, Burney LC (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminium as a reference element. Estuaries 13:227–235

    Article  CAS  Google Scholar 

  • Schwarzbauer J, Sindern S, Dsikowitzky L, Liebezeit G (2010) Geochemical analysis of Lake Bant sediments to ascertain inorganic and organic indicators for warfare residues. J Soils Sediments 10:104–118

    Article  CAS  Google Scholar 

  • Stephenson A (1997) Heavy metal analysis of liquid waste and sediment collected from the Aliaga Petrochemicals plant, Aliaga, Izmir, Turkey. September 1996. Technical note 10/97. Greenpeace Research Laboratory, University of Exeter, UK

  • Streif H (1990) Das ostfriesische Küstengebiet, Nordsee, Insel, Watten und Marschen. In: Sammlung Geologischer Frührer 57, 2nd edition. Gebrüder Borntraeger, Stuttgart, p 376

  • US EPA (1998) Mercury in solid and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Method 7473. Revision 0, January 1998

  • van Veizen D, Langenkamp H, Herb G (2002) Review: mercury in waste incineration. Waste Manag Res 20:556–568

    Article  Google Scholar 

  • Watermann F, Dellwig O, Brumsack HJ, Gerdes G, Krumbein WE (2000) Microfossils and geochemical data used as tools for palaeoenvironmental reconstruction of a Holocene depositional sequence from the coastlands of NW Germany. Palaios (submitted). http://oops.uni-oldenburg.de/volltexte/2000/408/pdf/chapter2-3.pdf. Accessed 19 Aug 2011

  • Watermann F, Dellwig O, Brumsack HJ, Gerdes G, Krumbein WE (2001) Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): a tool for palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimat Palaeoecol 167:359–379

    Article  Google Scholar 

  • Yang H (2010) Historical mercury contamination in sediments and catchment soils of Diss Mere, UK. Environ Pollut 158:2504–2510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of the Jade Bay Project, which was funded by the Ministry of Lower Saxony for the Environment and Nature Protection. Besides the geochemical analyses of the sediments, the Jade Bay Project also consists of geologic, geophysical, cultural–historical and benthic–ecological studies. We wish to thank Christine Wagener for the sediment sampling. Melanie Beck is also acknowledged for her work during the sampling and the analysis of aluminium and total organic carbon. A special thanks to Daniel Ziehe for support during analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafang Jin.

Additional information

Responsible editor: Gijs D. Breedveld

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Liebezeit, G. Distribution of total mercury in coastal sediments from Jade Bay and its catchment, Lower Saxony, Germany. J Soils Sediments 13, 441–449 (2013). https://doi.org/10.1007/s11368-012-0626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0626-6

Keywords

Navigation