Skip to main content
Log in

Geochemical speciation of chromium related to sediments properties in the riverbed contaminated by tannery effluents

  • Phytoremediation of Polluted Soils: Recent Progress and Developments
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Guadalentin River (SE Spain) has been affected by tannery industries, where their effluents, containing Cr, were spilled until 2003. The untreated tannery effluent is characterized by the presence of inorganic and organic substances including a basic chromium (III) sulfate salt. Chromium contents in sediments represent permanent environmental and human health risks. The main objectives of this research were to evaluate the contamination, the spatial distribution, and the speciation of chromium in the sediments.

Materials and methods

In order to determine the degree of Cr pollution and to evaluate the influence of sediment properties in the behavior of total Cr, Cr(VI), and Cr(III) concentrations, a sediment sampling was carried out in a stretch of 1500 m of the dry riverbed, from 0 to 100 cm deep. Total, soluble, and exchangeable Cr(III+IV) and Cr(III) were measured using graphite furnace atomic absorption spectrometry (GFAAS), and Cr(VI) was selectively extracted by EPA 3060A method. A physicochemical characterization of the riverbed sediments was done with the aim of evaluating the influence of some sediment properties related to the contents of total Cr and its speciation.

Results and discussion

Chromium total concentration was high in the riverbed (11–11099 mg kg−1) up to 100 cm deep, exceeding in almost all the study stretch, the background level, and the generic reference values of Cr for Murcia Province. The highest degrees of sediment pollution (over 10,000 mg Cr kg−1) are located 20–50 cm deep, at the first 600 m east of the city center, and in the last 300 m of the studied area, which reveals that the Cr contents in sediments are relatively higher near the discharge point of the tannery facilities. Chromium(III) is the predominant oxidation state with 95.87 % (mean value) of total Cr in the sediments.

Conclusions

The results (maximum values 11099 Cr mg kg−1 and 79 Cr(VI) mg kg−1) indicated Cr leaching from the surface until 100 cm deep. Chromium(VI) represents 4.13 % of total Cr, so Cr(III) was the predominant oxidation state. The riverbed sediment pollution by Cr (total) and Cr(VI) was caused by an anthropogenic activity (tannery industry).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta JA (2008) Caracterización y contenido en metales pesados de los suelos de la ciudad de Murcia y alrededores. Universidad Politécnica de Cartagena. PhD Thesis

  • Acosta JA, Faz A, Martinez-Martinez S (2009) Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environ Monit Assess 169:519–530

    Article  Google Scholar 

  • Acosta JA, Faz A, Martínez-Martínez S, Zornoza R, Carmona DM, Kabas S (2011) Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 109:8–17

    Article  CAS  Google Scholar 

  • Andrades M (1996) Prácticas de edafología y climatología. Universidad de la Rioja Eds, Spain

    Google Scholar 

  • Bajza Z, Vrcek IV (2001) Water quality analysis of mixtures obtained from tannery waste effluents. Ecotox Environ Safe 50:15–18

    Article  CAS  Google Scholar 

  • Bartlett RJ, James BR (1993) Redox chemistry of soils. In: Sparks DL (ed) Advances in agronomy. Academic, New York, pp 151–208

    Google Scholar 

  • Bartlett RJ, Kimble JM (1976) Behavior of chromium in sediments II. Hexavalent forms. J Environ Qual 5(4):383–386

    Article  CAS  Google Scholar 

  • Bini C, Maleci L, Romanin A (2008) The chromium issue in sediments of the leather tannery district in Italy. J Geochem Explor 96:194–202

    Article  CAS  Google Scholar 

  • Bouyoucos GC (1936) Directions for making mechanical analysis of sediments by the hydrometer method. Sediment Sci 4:225–228

    Google Scholar 

  • Brady N, Weil R (2008) The nature and properties of sediments, 14th edn. Pearson Prentice Hall, New Jersey, USA

    Google Scholar 

  • Brallier S, Harrison RB, Henry CL, Dongsen X (1996) Liming effects on availability of Cd, Cu, Ni and Zn in sediment amended with sewage sludge 16 years previously. Water Air Soil Poll 86:195–206

    Article  CAS  Google Scholar 

  • Callender E (2003) Heavy metals in the environment historical trends. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier Publishers, Amsterdam, pp 67–105

    Chapter  Google Scholar 

  • Celine SL, Xiangdong L, Wenzhong S, Sharon C, Iain T (2006) Metal contamination in urban, suburban, and country park sediments of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61

    Article  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Harikrishnan N, Satapathy KK, Prasad MVR, Kanagasabapathy KV (2015) Multivariate statistical analysis of heavy metal concentration in sediments of Yelagiri Hills, Tamilnadu, India—spectroscopical approach. Spectrochim Acta A 137:589–600

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey B (2013) Chemical and microbial remediation of hexavalent chromium from contaminated sediment and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Article  Google Scholar 

  • Díez JA (1982) Consideraciones sobre la utilización de la técnica extractiva de Burriel-Hernando para la evaluación de fósforo asimilable en suelos. Anales de Edafología y Agrobiología 41:1345–1353

    Google Scholar 

  • Dong C, Chen CW, Chen CF (2013) Distribution and contamination status of chromium in surface sediments of northern Kaohsiung Harbor, Taiwan. J Environ Sci 25(7):1450–1457

    Article  CAS  Google Scholar 

  • Duchaufour P (1970) Precis de Pedologie. Masson, Paris

    Google Scholar 

  • Eary LE, Rai D (1991) Chromate reduction by subsurface sediments under acidic conditions. Sediment Sci Soc Am J 55:676–683

    Article  CAS  Google Scholar 

  • Elci L, Divrikli U, Akdogan A, Hol A, Cetin A, Soylak M (2010) Selective extraction of chromium(VI) using a leaching procedure with sodium carbonate from some plant leaves, sediment and sediment samples. J Hazard Mater 173(1–3):778–782

    Article  CAS  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of sediments by plants. Appl Geochem 11:163–167

    Article  CAS  Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in sediments and waters. Geoderma 67(1–2):55–71

    Article  CAS  Google Scholar 

  • Fendorf SE, Zasoski RJ (1992) Chromium (III): oxidation by –MnO2. I. Characterization. Environ Sci Technol 26(1):79–85

    Article  CAS  Google Scholar 

  • Fowler J, Cohen L, Jarvis P (2006) Practical statistics for field biology. Wiley, Chichester

    Google Scholar 

  • Gómez-Garrido M (2014) Efectos ambientales de la valorización agronómica de purines de ganado porcino: dinámica del nitrógeno en el sistema suelo-agua-planta. PhD Tesis, Universidad Politécnica de Cartagena

  • Graham AM, Wadhawan AR, Bouwer EJ (2009) Chromium occurrence and speciation in Baltimore Harbour sediments and porewater, Baltimore, Maryland, USA. Environ Toxicol Chem 28:471–480

    Article  CAS  Google Scholar 

  • Griffin RA, Shimp NF (1978) Attenuation of pollutants in municipal landfill leachate by clay minerals. EPA-600/2-78-157

  • Gutiérrez-Galindo EA, Muñoz-Barbosa A, Walter L, Macías-Zamora JV, Segovia-Zavala JA (2007) Sources and factors influencing the spatial distribution of heavy metals in a coastal lagoon adjacent to the San Quintín volcanic field, Baja California, Mexico. Mar Pollut Bull 54:1962–1989

    Article  Google Scholar 

  • James BR, Bartlett RJ (1983) Behavior of chromium in sediments: V. Fate of organically complexed Cr(II) added to sediment. J Environ Qual 12:169–172

    Article  CAS  Google Scholar 

  • James BR, Petura JC, Vitale RJ, Mussoline GR (1997) Oxidation–reduction chemistry of chromium: relevance to the regulation and remediation of chromate-contaminated sediments. J Sediment Contam VI 6:569–580

    Article  CAS  Google Scholar 

  • Köleli N (2004) Speciation of chromium in 12 agricultural sediments form Turkey. Chemosphere 57:1473–1478

    Article  Google Scholar 

  • Lilly M, Moraetis D, Nikolaidis P, Karatzasa G, Kalogerakis N (2015) Characterization and mobility of geogenic chromium in sediments and riverbed sediments of Asopos basin. J Hazard Mater 281:12–19

    Article  Google Scholar 

  • Loayza J (2008) Metales pesados en los cultivos II. Boletín electrónico informativo sobre productos químicos y residuos 4(38):1–4. Universidad Nacional Mayor de San Marcos, Lima (Perú)

  • Mandiwana KL (2008) Rapid leaching of Cr(VI) in sediment with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry. Talanta 74:736–740

    Article  CAS  Google Scholar 

  • Martínez MJ, Pérez C (2007) Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Consejería de Desarrollo Sostenible y Ordenación del Territorio, Murcia

    Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behaviour of metals in sediments. Ground Water Issue.EPA/540/S-92/018

  • Mendiguchía C, Moreno C, Galindo R, García-Vargas M (2004) Using chemometric tools to assess anthropogenic effects in river water. A case study: Guadalquivir River (Spain). Anal Chim Acta 515:143–149

    Article  Google Scholar 

  • Nobi E, Dilipan E, Thangarodjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf S 87:253–264

    Article  CAS  Google Scholar 

  • Otabbong E (1989) Chemistry of Cr in some Swedish sediments. 1. Chromium speciation in sediment extracts: a comparison of different methods. Acta Agr Scand B-S P 39:119–129

    Article  CAS  Google Scholar 

  • Pawlikowski M, Szalinska E, Wardas M, Dominik J (2006) Cr originating from tanneries in river sediments: a preliminary investigation from the Upper Dunajec River (Poland). Pol J Environ Etud 15:885–894

    CAS  Google Scholar 

  • Peech M (1965) Hidrogen-ion activity. In: Black CA (ed) Methods of sediment analysis, 2nd edn. Madison, American Society of Agronomy, pp 914–916

    Google Scholar 

  • Peris M, Recatalá L, Micó C, Sánchez R, Sánchez J (2008) Increasing the knowledge of heavy metal contents and sources in agricultural sediments of the European Mediterranean region. Water Air Soil Poll 37:192–25

    Google Scholar 

  • Pertsemli E, Voutsa D (2007) Distribution of heavy metals in Lake Doirani and Kerkini, Northern Greece. J Hazard Mater 148(3):529–537

    Article  CAS  Google Scholar 

  • Pueyo M, López-Sanchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated sediments. Anal Chim Acta 504:217–226

    Article  CAS  Google Scholar 

  • Risser JA, Baker DE (1990) Testing sediments for toxic metals. In: Westerman RL (ed) Sediment testing and plant analysis, 3rd edn. Sediment Science Society of America Publisher, 3, Madison, Wisconsin, pp 275–298

    Google Scholar 

  • Roig A, Romero M, Lax A, Fernández FG (1980) Estudio comparativo de métodos de determinación de capacidad de cambio catiónica en suelos calizos. Anales de Edafología y Agrobiología 39:2021–2032

    CAS  Google Scholar 

  • Romero C, Pellerano R, Acevedo H, Vázquez F (2006) Estandarización condiciones preliminares para la determinación de cromo en muestras medioambientales. Comunicaciones científicas y tecnológicas. Resumen E-039. Universidad Nacional el Nordeste (Argentina)

  • Romic M, Romic D (2002) Heavy metals distribution in agricultural top sediments in urban area. Environ Geol 43:795–805

    Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in sediments. In: Ross SM (ed) Toxic metals in sediment–plant systems. John Wiley and Sons Ltd, Chichester, UK, pp 63–152

    Google Scholar 

  • Severiche C, Gonzalez HV (2013) Assesment of an analytical method for determining hexavalent chromium in water using spectrophotometry.Revista. Facultad de Ingenierías USBMed 4(1):22–26

    Article  Google Scholar 

  • Soil Survey Staff (2004) Sediment survey laboratory methods manual.Version No. 4.0.USDA NRCS. Sediment Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, DC

  • Stein K, Schwedt G (1994) Chromium speciation in the wastewater from a tannery. Fresen J Anal Chem 350:38–41

    Article  CAS  Google Scholar 

  • Steward MA, Jardine PM, Barnett MO, Mehlhom TL, Hyder LK, Mckay LD (2013) Influence of sediment geochemical and physical properties on the sorption and bioaccessibility of chromium(III). J Environ Qual 32:129–136

    Article  Google Scholar 

  • Tariq SR, Shah MH, Shaheen N (2006) Multivariate analysis of trace metal levels in tannery effluents in relation to sediment and water: a case study from Peshawar, Pakistan. J Environ Manage 79:20–29

    Article  CAS  Google Scholar 

  • Taylor M, Diefendorf G (1990) Enzymatic treatment of chrome shavings. J Am Chem Soc 85(9):261–282

    Google Scholar 

  • Thorstensen TC (1984) Practical leather technology. Robert E Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  • Tokalıŏglu S, Kartal S (2006) Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmos Environ 40:2797–2805

    Article  Google Scholar 

  • Urbano P (2001) Tratado de fitotecnia general. Ed. Mundi Prensa, Madrid

  • US EPA Method 3060A (1996) Alkaline digestión for hexavalent chromium.

  • US EPA Method 7196A (1992) Chromium, hexavalent (colorimetric)

  • USDA (2015) Web Sediment Survey www.nrcs.usda.gov. Accessed may 2015

  • Vink JPM (2009) The origin of speciation: trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation. Environ Pollut 157:519–527

    Article  CAS  Google Scholar 

  • Walsh AR, O'Halloran J (1996) Chromium speciation in tannery effluent-I. An assessment of techniques and role of organic Cr(III) complexes. Water Res 30:2393–2400

    Article  CAS  Google Scholar 

  • Wang J, Ashley K, Kennedy ER, Neumeister C (1997) Determination of hexavalent chromium in industrial hygiene samples using ultrasonic extraction and flow injection analysis. Analyst 122:1307–1312

    Article  CAS  Google Scholar 

  • Xinwei L, Lijun W, Li LY, Kai L, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173(1):744–749

    Google Scholar 

Download references

Acknowledgements

This work was funded by the EU-LIFE+ project RiverPhy (LIFE11 ENV/ES/000506) “Rehabilitation of a heavy metal contaminated riverbed by phytoextraction technique.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Alberto Acosta.

Additional information

Responsible editor: Maria Manuela Abreu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales, R.M., Faz, A., Gómez-Garrido, M. et al. Geochemical speciation of chromium related to sediments properties in the riverbed contaminated by tannery effluents. J Soils Sediments 17, 1437–1448 (2017). https://doi.org/10.1007/s11368-016-1412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1412-7

Keywords

Navigation