Skip to main content
Log in

Binding of Sb(III) by Sb-tolerant Bacillus cereus cell and cell-goethite composite: implications for Sb mobility and fate in soils and sediments

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Adsorption onto mineral and bacterial surfaces can profoundly affect the mobility and fate of dissolved ions in soils; however, currently, there is a poor understanding of antimony (Sb) adsorption onto mixture of these two sorbents. This study aims at investigating the adsorption of Sb(III) to an antimony-tolerant soil bacterium Bacillus cereus and cell-goethite binary composite under anaerobic condition.

Materials and methods

Adsorption isotherms and adsorption edges (pH 3–10) were conducted to explore the adsorption capacity of Sb(III) to goethite, bacteria, and the cell-goethite composite. X-ray photoelectron spectroscopy (XPS) was applied to determine the surface functional groups that are responsible for Sb adsorption.

Results and discussion

Scanning electron microscope shows that nano-particulate goethite is strongly adsorbed onto the cell surfaces to give a mineral film. The cell-goethite composite displays an additive Sb adsorption behavior, i.e., composite adsorptivity is the sum of the individual end-member metal adsorptivities (i.e., the additivity rule). Sb(III) adsorption to goethite, Bacillus cereus cells, and the cell-goethite composite is independent of pH. Using high-resolution XPS spectra, we identify the ferric hydroxyl functional groups of goethite and the carboxyl and amino/amide groups of bacteria responsible for Sb binding to the binary solid products. Moreover, the molecular binding mechanisms are very similar between the composite and the isolated end-member bacteria and mineral phases.

Conclusions

Sb(III) adsorption to the bacteria-goethite conforms to a component-additive rule. Goethite component plays a more important role in Sb binding to the bacteria-mineral composite. New findings of this research suggest that it should be careful to use the universal adsorption rule for cations as previously suggested, to simulate anion adsorption to organo-iron oxide composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahimou F, Boonaert CJ, Adriaensen Y, Jacques P, Thonart P, Paquot M, Rouxhet PG (2007) XPS analysis of chemical functions at the surface of Bacillus subtilis. J Colloid Interface Sci 309:49–55

    Article  CAS  Google Scholar 

  • Burnett PGG, Daughney CJ, Peak D (2006) Cd adsorption onto Anoxybacillus flavithermus: surface complexation modeling and spectroscopic investigations. Geochim Cosmochim Acta 70:5253–5269

    Article  CAS  Google Scholar 

  • Cao CY, Qu J, Yan WS, Zhu JF, Wu ZY, Song WG (2012) Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28:4573–4579

    Article  CAS  Google Scholar 

  • Crawford SE, Lofts S, Liber K (2017) The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Environ Pollut 220:873–881

    Article  CAS  Google Scholar 

  • Dai C, Lin M, Hu Y (2017) Heterogeneous Ni- and cd-bearing ferrihydrite precipitation and recrystallization on quartz under acidic pH condition. ACS Earth Space Chem 1:621–628

    Article  CAS  Google Scholar 

  • Du H, Lin Y, Chen W, Cai P, Rong X, Shi Z, Huang Q (2017) Copper adsorption on composites of goethite, cells of Pseudomonas putida and humic acid. Eur J Soil Sci 68:514–523

    Article  CAS  Google Scholar 

  • Du H, Huang Q, Lei M, Tie B (2018a) Sorption of Pb(II) by nanosized ferrihydrite organo-mineral composites formed by adsorption versus coprecipitation. ACS Earth Space Chem 2:556–564

    Article  CAS  Google Scholar 

  • Du H, Huang Q, Yang R, Tie B, Lei M (2018b) Cd sequestration by bacteria–aluminum hydroxide composites. Chemosphere 198:75–82

    Article  CAS  Google Scholar 

  • Du H, Peacock CL, Chen W, Huang Q (2018c) Binding of cd by ferrihydrite organo-mineral composites: implications for cd mobility and fate in natural and contaminated environments. Chemosphere 207:404–412

    Article  CAS  Google Scholar 

  • Essington ME, Stewart MA (2016) Adsorption of antimonate by gibbsite: reversibility and the competitive effects of phosphate and sulfate. Soil Sci Soc Am J 80:1197–1207

    Article  CAS  Google Scholar 

  • Essington ME, Vergeer KA (2015) Adsorption of antimonate, phosphate, and sulfate by manganese dioxide: competitive effects and surface complexation modeling. Soil Sci Soc Am J 79:803–814

    Article  CAS  Google Scholar 

  • Franzblau RE, Daughney CJ, Moreau M, Weisener CG (2014) Selenate adsorption to composites of Escherichia coli and iron oxide during the addition, oxidation, and hydrolysis of Fe(II). Chem Geol 383:180–193

    Article  CAS  Google Scholar 

  • Franzblau RE, Daughney CJ, Swedlund PJ, Weisener CG, Moreau M, Johannessen B, Harmer SL (2016) Cu(II) removal by anoxybacillus flavithermus–iron oxide composites during the addition of Fe(II) aq. Geochim Cosmochim Acta 172:139–158

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Glasauer S, Langley S, Beveridge TJ (2001) Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Appl Environ Microbiol 67:5544–5550

    Article  CAS  Google Scholar 

  • Guo X, Wu Z, He M, Meng X, Jin X, Qiu N, Zhang J (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. J Hazard Mater 276:339–345

    Article  CAS  Google Scholar 

  • He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci Total Environ 421-422:41–50

    Article  CAS  Google Scholar 

  • Herath I, Vithanage M, Bundschuh J (2017) Antimony as a global dilemma: geochemistry, mobility, fate and transport. Environ Pollut 223:545–559

    Article  CAS  Google Scholar 

  • Huang W, Cheng W, Nie X, Dong F, Ding C, Liu M, Li Z, Hayat T, Alharbi NS (2017) Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by Bacillus Mucilaginosus. ACS Earth Space Chem 1:483–492

    Article  CAS  Google Scholar 

  • Ji Y, Sarret G, Schulin R, Tandy S (2017) Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. Environ Pollut 231:1322–1329

    Article  CAS  Google Scholar 

  • Li X, Yang H, Zhang C, Zeng G, Liu Y, Xu W, Wu Y, Lan S (2017) Spatial distribution and transport characteristics of heavy metals around an antimony mine area in Central China. Chemosphere 170:17–24

    Article  CAS  Google Scholar 

  • Li J, Hou H, Hosomi M (2018) Sorption-desorption of Sb(III) in different soils: kinetics and effects of the selective removal of hydroxides, organic matter, and humic substances. Chemosphere 204:371–377

    Article  CAS  Google Scholar 

  • Liu R, Liu F, Hu C, He Z, Liu H, Qu J (2015) Simultaneous removal of cd(II) and Sb(V) by Fe-Mn binary oxide: positive effects of cd(II) on Sb(V) adsorption. J Hazard Mater 300:847–854

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2012) Adsorption of cu(II) to ferrihydrite and ferrihydrite–bacteria composites: importance of the carboxyl group for cu mobility in natural environments. Geochim Cosmochim Acta 92:203–219

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2013) Modelling cu(II) adsorption to ferrihydrite and ferrihydrite–bacteria composites: deviation from additive adsorption in the composite sorption system. Geochim Cosmochim Acta 104:148–164

    Article  CAS  Google Scholar 

  • Nakamaru YM, Martin Peinado FJ (2017) Effect of soil organic matter on antimony bioavailability after the remediation process. Environ Pollut 228:425–432

    Article  CAS  Google Scholar 

  • Ojeda JJ, Romerogonzalez ME, Bachmann RT, Edyvean RG, Banwart SA (2008) Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 24:4032–4040

    Article  CAS  Google Scholar 

  • Pastuszka JS, Talik E, Hacura A, Słoka J, Wlazło A (2005) Chemical characterization of airborne bacteria using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIRS). Aerobiologia 21:181–192

    Article  Google Scholar 

  • Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of cu(II) and cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853

    Article  CAS  Google Scholar 

  • Pierart A, Dumat C, Maes AQ, Sejalon-Delmas N (2018) Influence of arbuscular mycorrhizal fungi on antimony phyto-uptake and compartmentation in vegetables cultivated in urban gardens. Chemosphere 191:272–279

    Article  CAS  Google Scholar 

  • Qi P, Pichler T (2016) Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: implications for oxidation and competition. Chemosphere 145:55–60

    Article  CAS  Google Scholar 

  • Qu C, Du H, Ma M, Chen W, Cai P, Huang Q (2018a) Pb sorption on montmorillonite-bacteria composites: a combination study by XAFS, ITC and SCM. Chemosphere 200:427–436

    Article  CAS  Google Scholar 

  • Qu C, Ma M, Chen W, Cai P, Yu X-Y, Feng X, Huang Q (2018b) Modeling of cd adsorption to goethite-bacteria composites. Chemosphere 193:943–950

    Article  CAS  Google Scholar 

  • Rakshit S, Sarkar D, Punamiya P, Datta R (2011) Antimony sorption at gibbsite–water interface. Chemosphere 84:480–483

    Article  CAS  Google Scholar 

  • Rakshit S, Sarkar D, Datta R (2015) Surface complexation of antimony on kaolinite. Chemosphere 119:349–354

    Article  CAS  Google Scholar 

  • Schwertmann HCU, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization. Clay Miner 27:393–393

    Google Scholar 

  • Sun F, Yan Y, Liao H, Bai Y, Xing B, Wu F (2014) Biosorption of antimony(V) by freshwater Cyanobacteria microcystis from Lake Taihu, China: effects of pH and competitive ions. Environ Sci Pollut Res 21:5836–5848

    Article  CAS  Google Scholar 

  • Templeton AS, Spormann AM, Brown GE (2003) Speciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites. Environ Sci Technol 37:2166–2172

    Article  CAS  Google Scholar 

  • Thanabalasingam P, Pickering WF (1990) Specific sorption of antimony (III) by the hydrous oxides of Mn, Fe, and Al. Water Air Soil Pollut 49:175–185

    Article  CAS  Google Scholar 

  • Uluozlu OD, Sarı A, Tuzen M (2010) Biosorption of antimony from aqueous solution by lichen (Physcia tribacia) biomass. Chem Eng J 163:382–388

    Article  CAS  Google Scholar 

  • Villalobos M, Leckie JO (2001) Surface complexation modeling and FTIR study of carbonate adsorption to goethite. J Colloid Interface Sci 235:15–32

    Article  CAS  Google Scholar 

  • Wu H, Chen W, Rong X, Cai P, Dai K, Huang Q (2014) Adhesion of Pseudomonas putida onto kaolinite at different growth phases. Chem Geol 390:1–8

    Article  CAS  Google Scholar 

  • Xi J, He M (2013) Removal of Sb(III) and Sb(V) from aqueous media by goethite. Water. Qual Res J Can 48:223–231

    Article  CAS  Google Scholar 

  • Xu W, Wang H, Liu R, Zhao X, Qu J (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. J Colloid Interface Sci 363:320–326

    Article  CAS  Google Scholar 

  • Zhang D, Pan X, Li Z, Mu G (2011) Biosorption of antimony (Sb) by the cyanobacterium synechocystis sp. Pol J Environ Stud 20:1353–1358

    CAS  Google Scholar 

  • Zhou S, Sato T, Otake T (2018) Dissolved silica effects on adsorption and co-precipitation of Sb(III) and Sb(V) with ferrihydrite. Minerals 8:101

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Science Foundation of China (41671475), Environmental Protection Department of Hunan Province (Xiangcai jianzhi 2016, 59), the Education Department of Hunan Foundation (16C0225), Hunan Provincial Natural Science Foundation of China (2018JJ3239), National Key R&D Program of China (2017YFD0801505), and Science Foundation for Young Scholars of Hunan Agricultural University (No: 17QN37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Du.

Additional information

Responsible editor: Yuan Ge

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Tao, J., Yang, R. et al. Binding of Sb(III) by Sb-tolerant Bacillus cereus cell and cell-goethite composite: implications for Sb mobility and fate in soils and sediments. J Soils Sediments 19, 2850–2858 (2019). https://doi.org/10.1007/s11368-019-02272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02272-z

Keywords

Navigation