Skip to main content
Log in

Computer-supported argumentation: A review of the state of the art

  • Published:
International Journal of Computer-Supported Collaborative Learning Aims and scope Submit manuscript

Abstract

Argumentation is an important skill to learn. It is valuable not only in many professional contexts, such as the law, science, politics, and business, but also in everyday life. However, not many people are good arguers. In response to this, researchers and practitioners over the past 15–20 years have developed software tools both to support and teach argumentation. Some of these tools are used in individual fashion, to present students with the “rules” of argumentation in a particular domain and give them an opportunity to practice, while other tools are used in collaborative fashion, to facilitate communication and argumentation between multiple, and perhaps distant, participants. In this paper, we review the extensive literature on argumentation systems, both individual and collaborative, and both supportive and educational, with an eye toward particular aspects of the past work. More specifically, we review the types of argument representations that have been used, the various types of interaction design and ontologies that have been employed, and the system architecture issues that have been addressed. In addition, we discuss intelligent and automated features that have been imbued in past systems, such as automatically analyzing the quality of arguments and providing intelligent feedback to support and/or tutor argumentation. We also discuss a variety of empirical studies that have been done with argumentation systems, including, among other aspects, studies that have evaluated the effect of argument diagrams (e.g., textual versus graphical), different representations, and adaptive feedback on learning argumentation. Finally, we conclude by summarizing the “lessons learned” from this large and impressive body of work, particularly focusing on lessons for the CSCL research community and its ongoing efforts to develop computer-mediated collaborative argumentation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth, S. E. (1999). Designing effective multi-representational learning environments, Technical Report number 58. ESRC centre for research in development, instruction and training, University of Nottingham, UK.

  • Aleven, V., & Ashley, K. D. (1997). Teaching case-based argumentation through a model and examples: Empirical evaluation of an intelligent learning environment. In B. du Boulay & R. Mizoguchi (Eds.), Proceedings of the 8th International Conference on Artificial Intelligence in Education (AI-ED 1997) (pp. 87–94). Amsterdam: IOS.

    Google Scholar 

  • Allwood, J. (2002). Bodily communication dimensions of expression and content. In B. Granström, D. House, & I. Karlsson (Eds.), Multimodality in language and speech systems (pp. 7–26). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Andriessen, J. (2006). Arguing to learn. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443–460). New York: Cambridge University Press.

    Google Scholar 

  • Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison Wesley.

  • Baghaei, N., Mitrovic, A., & Irwin, W. (2007). Supporting collaborative learning and problem-solving in a constraint-based CSCL environment for UML class diagrams. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(2–3), 159–190.

    Google Scholar 

  • Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 47–78). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Belgiorno, F., De Chiara, R., Manno, I., Overdijk, M., Scarano, V., & van Diggelen, W. (2008). Face to face cooperation with CoFFEE. In P. Dillenbourg & M. Specht (Eds.), Proceedings of the 3rd European Conference on Technology Enhanced Learning (EC-TEL 2008) (pp. 49–57). Berlin: Springer.

    Google Scholar 

  • Bell, P. (1997). Using argument representations to make thinking visible for individuals and groups. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of the 2nd International Conference on Computer Support for Collaborative Learning (CSCL 1997) (pp. 10–19). Toronto: University of Toronto Press.

    Google Scholar 

  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22, 797–817.

    Google Scholar 

  • Bex, F., Prakken, H., Reed, C., & Walton, D. (2003). Towards a formal account of reasoning about evidence: Argumentation schemes and generalizations. Artificial Intelligence and Law, 11(2–3), 125–165.

    Google Scholar 

  • Bex, F., van den Braak, S., Oostendorp, H., Prakken, H., Verheij, B., & Vreeswijk, G. A. W. (2007). Sense-making software for crime investigation: How to combine stories and arguments? Law, Probability and Risk, 6(1–4), 145–168.

    Google Scholar 

  • Bouyias, Y. N., Demetriadis, S. N., & Tsoukalas, I. A. (2008). iArgue: A web-based argumentation system supporting collaboration scripts with adaptable fading. In Proceedings of the 8th International Conference on Advanced Learning Technologies (ICALT 2008) (pp. 477–479). IEEE Computer Society Press.

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. Washington: National Academy Press.

    Google Scholar 

  • Buckingham Shum, S. J., MacLean, A., Bellotti, V. M. E., & Hammond, N. V. (1997). Graphical argumentation and design cognition. Human-Computer Interaction, 12(3), 267–300.

    Google Scholar 

  • Buckingham Shum, S. J., Uren, V., Li, G., Domingue, J., Motta, E., & Mancini, C. (2002). Designing representational coherence into an infrastructure for collective sense-making. Invited discussion paper presented at the 2nd International Workshop on Infrastructures for Distributed Collective Practices.

  • Buckingham Shum, S. J., Selvin, A. M., Sierhuis, M., Conklin, J., Haley, C. B., & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 years on from gIBIS and QOC. In A. H. Dutoit, R. McCall, I. Mistrik, & B. Paech (Eds.), Rationale management in software engineering (pp. 111–132). Berlin: Springer.

    Google Scholar 

  • Bull, S., Brna, P., & Pain, H. (1995). Extending the scope of the student model. User Modeling and User-Adapted Interaction, 5(1), 45–65.

    Google Scholar 

  • Carr, C. S. (2003). Using computer supported argument visualization to teach legal argumentation. In P. A. Kirschner, S. J. Buckingham Shum, & C. S. Carr (Eds.), Visualizing argumentation: Software tools for collaborative and educational sense-making (pp. 75–96). London: Springer.

    Google Scholar 

  • Chesñevar, C., Maguitman, A., & Loui, R. (2000). Logical models of argument. ACM Computing Surveys, 32(4), 337–383.

    Google Scholar 

  • Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., et al. (2007). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293–316.

    Google Scholar 

  • Cho, K., & Schunn, C. D. (2007). Scaffolded writing and rewriting in the discipline: A web-based reciprocal peer review system. Computers & Education, 48(3), 409–426.

    Google Scholar 

  • Conklin, J., & Begeman, M. L. (1988). gIBIS: A hypertext tool for exploratory policy discussion. Proceedings of the ACM Conference on Computer-supported Cooperative Work (CSCW ‘88) (pp. 140–152). New York: ACM.

  • Corbel, A., Girardot, J. J., & Jaillon, P. (2002). DREW: A dialogical reasoning web tool. In A. Méndez-Vilas & J. A. Mesa González (Eds.), Information Society and Education: Monitoring a Revolution, Proceedings of International Conference on Information and Communication Technologies in Education (ICTE 2002) (pp. 516–521).

  • de Groot, R., Drachman, R., Hever, R., Schwarz, B., Hoppe, U., Harrer, A., et al. (2007). Computer supported moderation of e-discussions: The ARGUNAUT approach. In C. Chinn, G. Erkens & S. Puntambekar (Eds.), Mice, minds, and society—The computer supported collaborative learning (CSCL) Conference 2007, (pp. 165–167). International Society of the Learning Sciences.

  • Devedzic, V., & Harrer, A. (2005). Software patterns in ITS architectures. International Journal of Artificial Intelligence in Education, 15(2), 63–94.

    Google Scholar 

  • de Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Sciences, 11(1), 63–103.

    Google Scholar 

  • Dillenbourg, P. (2002). Over-scripting CSCL. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL (pp. 61–91). Heerlen: Open University of the Netherlands.

    Google Scholar 

  • Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer Supported Collaborative Learning (ijCSCL), 3(1), 5–23.

    Google Scholar 

  • Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1996). The evolution of research on collaborative learning. In E. Spada & P. Reiman (Eds.), Learning in humans and machine: Towards an interdisciplinary learning science (pp. 189–211). Oxford: Elsevier.

    Google Scholar 

  • Doise, W., & Mugny, W. (1984). The social development of the intellect. Oxford: Pergamon.

    Google Scholar 

  • Easterday, M. W., Aleven, V., & Scheines, R. (2007). ‘Tis better to construct or to receive? Effect of diagrams on analysis of social policy. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 93–100). Amsterdam: IOS.

    Google Scholar 

  • Feng, D., Kim, J., Shaw, E., & Hovy, E. (2006). Towards modeling threaded discussions through ontology-based analysis. In Proceedings of 21st National Conference on Artificial Intelligence (AAAI 2006) (pp. 1289–1294).

  • Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1995). Design patterns. Elements of reusable object-oriented software. Amsterdam: Addison-Wesley Longman.

    Google Scholar 

  • Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70.

    Google Scholar 

  • Goodman, B. A., Linton, F. N., Gaimari, R. D., Hitzeman, J. M., Ross, H. J., & Zarrella, G. (2005). Using dialogue features to predict trouble during collaborative learning. User Modeling and User-Adapted Interaction, 16(1–2), 85–134.

    Google Scholar 

  • Gordon, T. F., & Karacapilidis, N. (1997). The Zeno argumentation framework. In Proceedings of the 6th International Conference on AI and Law (ICAIL 1997) (pp. 10–18), New York: ACM.

  • Gordon, T. F., Prakken, H., & Walton, D. (2007). The Carneades model of argument and burden of proof. Artificial Intelligence, 171(10–15), 875–896.

    Google Scholar 

  • Gruber, T. R. (1993). A translation approach to portable ontology specification. Knowledge Acquisition, 5(2), 199–220.

    Google Scholar 

  • Hair, D. C. (1991). Legalese: A legal argumentation tool. SIGCHI Bulletin, 23(1), 71–74.

    Google Scholar 

  • Harrer, A., & Devedzic, V. (2002). Design and analysis patterns in its architectures. In Proceedings of the International Conference on Computers in Education (ICCE’02) (pp. 523–527). Washington: IEEE Computer Society Press.

  • Herman, I., & Marshall, M. S. (2000). GraphXMLan xml based graph interchange format. Available online: http://www.cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf, last visited: 2009-10-29.

  • Hoppe, H. U., Giemza, A., Wichmann, A., Krauß, M., Baurens, B., Rigolleau, B., et al. (2008). Combined deliverable D3.2bmoderator’s interface and D4.2bThe off-line tracer. Part A (documentation). Argunaut project deliverable. Available online: http://www.argunaut.org/argunaut-d3-2b-d4-2b-PartA.pdf, last visited: 2009-10-29.

  • Israel, J., & Aiken, R. (2007). Supporting collaborative learning with an intelligent web-based system. International Journal of Artificial Intelligence in Education, 17, 3–40.

    Google Scholar 

  • Jeong, A. C. (2003). The sequential analysis of group interaction and critical thinking in online threaded discussions. The American Journal of Distance Education, 17(1), 25–43.

    Google Scholar 

  • Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: The Hermes system. Information Systems, 26(4), 259–277.

    Google Scholar 

  • Karacapilidis, N., Tzagarakis, M., Karousos, N., Gkotsis, G., Kallistros, V., Christodoulou, S., et al. (2009). Tackling cognitively-complex collaboration with CoPe_it! International Journal of Web-Based Learning and Teaching Technologies, 4(3), 22–38.

    Google Scholar 

  • Keefer, M. W., Zeitz, C. M., & Resnick, L. B. (2000). Judging the quality of peer-led student dialogues. Cognition and Instruction, 18(1), 53–81.

    Google Scholar 

  • Kim, J., Shaw, E., Ravi, S., Tavano, E., Arromratana, A., & Sarda, P. (2008). Scaffolding on-line discussions with past discussions: An analysis and pilot study of pedabot. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems Conference (ITS-08) (pp. 343–352). Berlin: Springer.

    Google Scholar 

  • Klein, M., & Iandoli, L. (2008). Supporting collaborative deliberation using a large-scale argumentation system: The MIT collaboratorium, MIT Sloan Research Paper No. 4691-08. Available online: http://ssrn.com/abstract=1099082, last visited: 2009-11-26.

  • Koschmann, T. (2003). CSCL, argumentation, and Deweyian inquiry: Argumentation is learning. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 261–269). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kumar, R., Rosé, C. P., Wang, Y.-C., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as adaptive collaborative learning support. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 383–390). Amsterdam: IOS.

    Google Scholar 

  • Kunz, W., & Rittel, H. (1970). Issues as elements of information systems. Working paper #131. Institut für Grundlagen der Planung I.A. University of Stuttgart, Germany. Available online: http://www.cc.gatech.edu/∼ellendo/rittel/rittel-issues.pdf, last visited: 2009-10-29.

  • Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43(6), 332–360.

    Google Scholar 

  • Linn, M. C., Bell, P., & Hsi, S. (1998). Using the Internet to enhance student understanding of science: The knowledge integration environment. Interactive Learning Environments, 6(1–2), 4–38.

    Google Scholar 

  • Linn, M. C., Clark, D., & Slotta, J. D. (2003). Wise design for knowledge integration. Science Education, 87(4), 517–538.

    Google Scholar 

  • Loll, F., & Pinkwart, N. (2009). Using collaborative filtering algorithms as eLearning tools. In R. H. Sprague (Ed.), Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS 2009). IEEE Computer Society Press.

  • Loll, F., Pinkwart, N., Scheuer, O., & McLaren, B. M. (2009). Towards a flexible intelligent tutoring system for argumentation. In I. Adeo, N. Chen, Kinshuk, D. Sampson, & L. Zaitseva (Eds.), Proceedings of the 9th IEEE International Conference on Advanced Learning Technologies (pp. 647–648). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Loui, R. P., Norman, J., Altepeter, J., Pinkard, D., Linsday, J., & Foltz, M. (1997). Progress on room 5: A testbed for public interactive semi-formal legal argumentation. In Proceedings of the 6th International Conference on Artificial Intelligence and Law (ICAIL 1997) (pp. 207–214). ACM.

  • Lowrance, J. D. (2007). Graphical manipulation of evidence in structured arguments. Law, Probability & Risk, 6(1–4), 225–240.

    Google Scholar 

  • Lowrance, J., Harrison, I., Rodriguez, A., Yeh, E., Boyce, T., Murdock, J., et al. (2008). Template-based structured argumentation. In A. Okada, S. Buckingham Shum, & T. Sherborne (Eds.), Knowledge cartography: Software tools and mapping techniques (pp. 307–333). London: Springer.

    Google Scholar 

  • Lund, K. (2007a). The importance of gaze and gesture in interactive multimodal explanation. Language Resources and Evaluation, 41(3–4), 289–303.

    Google Scholar 

  • Lund, K., Molinari, G., Séjorné, A., & Baker, M. (2007). How do argumentation diagrams compare when student pairs use them as a means for debate or as a tool for representing debate? International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(2–3), 273–295.

    Google Scholar 

  • Lynch, C., Ashley, K., Aleven, V., & Pinkwart, N. (2006). Defining ill-defined domains; a literature survey. In V. Aleven, K. Ashley, C. Lynch, & N. Pinkwart (Eds.), Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at the 8th International Conference on Intelligent Tutoring Systems (ITS 2008) (pp. 1–10). Jhongli: National Central University.

    Google Scholar 

  • Malone, T. W., & Klein, M. (2007). Harnessing collective intelligence to address global climate change. Innovations, 2(3), 15–26.

    Google Scholar 

  • Marshall, C. C., Halasz, F. G., Rogers, R. A., & Janssen, W. C. (1991). Aquanet: A hypertext tool to hold your knowledge in place. In Proceedings of the 3rd annual ACM conference on Hypertext (HYPERTEXT ‘91) (pp. 261–275). New York: ACM.

  • McAlister, S., Ravenscroft, A., & Scanlon, E. (2004). Combining interaction and context design to support collaborative argumentation using a tool for synchronous CMC. Journal of Computer Assisted Learning: Special Issue: Developing Dialogue for Learning, 20(3), 194–204.

    Google Scholar 

  • McLaren, B. M., Scheuer, O., & Mikšátko, J. (in press). Supporting collaborative learning and e-discussions using artificial intelligence techniques. International Journal of Artificial Intelligence in Education.

  • McManus, M., & Aiken, R. (1995). Monitoring computer-based problem solving. Journal of Artificial Intelligence in Education, 6(4), 307–336.

    Google Scholar 

  • Muller Mirza, N., & Perret-Clermont, A.-N. (2009). Argumentation and education: Theoretical foundations and practices (1st ed.). Berlin: Springer.

    Google Scholar 

  • Muller Mirza, N., Tartas, V., Perret-Clermont, A.-N., & de Pietro, J.-F. (2007). Using graphical tools in a phased activity for enhancing dialogical skills: An example with digalo. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(2–3), 247–272.

    Google Scholar 

  • Munneke, L., van Amelsvoort, M., & Andriessen, J. (2003). The role of diagrams in collaborative argumentation-based learning. International Journal of Educational Research, 39(1–2), 113–131.

    Google Scholar 

  • Murray, T., Woolf, B., & Marshall, D. (2004). Lessons learned from authoring for inquiry learning: A tale of authoring tool evolution. In J. C. Lester, R. M. Vicari, & F. Paraguaçu (Eds.), Proceedings of the 7th International Conference on Intelligent Tutoring Systems (ITS 2004) (pp. 197–206). Berlin: Springer.

    Google Scholar 

  • Nussbaum, E. M., Winsor, D. L., Aqui, Y. M., & Poliquin, A. M. (2007). Putting the pieces together: Online argumentation vee diagrams enhance thinking during discussions. International Journal on Computer-Supported Collaborative Learning (ijCSCL), 2(4), 479–500.

    Google Scholar 

  • Okada, A., & Buckingham Shum, S. (2008). Evidence-based dialogue maps as a research tool to investigate the quality of school pupils’ scientific argumentation. International Journal of Research & Method in Education, 31(3), 291–315.

    Google Scholar 

  • Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2006a). Toward legal argument instruction with graph grammars and collaborative filtering techniques. In M. Ikeda, K. Ashley, & T. W. Chan (Eds.), Proceedings of the 8th International Conference on Intelligent Tutoring Systems (ITS 2006) (pp. 227–236). Berlin: Springer.

    Google Scholar 

  • Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2006b). Schwachstellenermittlung und Rückmeldungsprinzipen in einem intelligenten Tutorensystem für juristische Argumentation. In M. Mühlhäuser, G. Rößling & R. Steinmetz (Eds.), GI lecture notes in informaticsTagungsband der 4. e-Learning Fachtagung Informatik.

  • Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2007). Evaluating legal argument instruction with graphical representations using largo. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 101–108). Amsterdam: IOS.

    Google Scholar 

  • Pinkwart, N., Ashley, K., Lynch, C., & Aleven, V. (2008a). Graph grammars: An ITS technology for diagram representations. In D. Wilson & H. C. Lane (Eds.), Proceedings of 21st International FLAIRS Conference (FLAIRS-21) (pp. 433–438). Coconut Grove: AAAI.

  • Pinkwart, N., Lynch, C., Ashley, K., & Aleven, V. (2008b). Re-evaluating Largo in the classroom: Are diagrams better than text for teaching argumentation skills? In B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (ITS 2008) (pp. 90–100). Berlin: Springer.

    Google Scholar 

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

    Google Scholar 

  • Ranney, M., & Schank, P. (1998). Toward an integration of the social and the scientific: Observing, modeling, and promoting the explanatory coherence of reasoning. In S. Read & L. Miller (Eds.), Connectionist models of social reasoning and social behavior (pp. 245–274). Mahwah: Erlbaum.

    Google Scholar 

  • Ravenscroft, A., Sagar, M., Baur, E., & Oriogun, P. (2008). Ambient pedagogies, meaningful learning and social software. In S. Hatzipanagos & S. Warburton (Eds.), Social software & developing community ontologies (pp. 432–450). Hershey: IGI Global.

    Google Scholar 

  • Ravi, S., & Kim, J. (2007). Profiling student interactions in threaded discussions with speech act classifiers. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (AI-ED 2007) (pp. 357–364). Amsterdam: IOS.

    Google Scholar 

  • Reed, C., & Rowe, G. (2004). Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools, 14(3–4), 961–980.

    Google Scholar 

  • Reitman, W. R. (1964). Heuristic decision procedures open constraints and the structure of ill-defined problems. In M. W. Shelly & G. L. Bryan (Eds.), Human judgment and optimality (pp. 282–315). New York: Wiley.

    Google Scholar 

  • Rittel, H. W. T., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.

    Google Scholar 

  • Robertson, J., Good, J., & Pain, H. (1998). BetterBlether: The design and evaluation of a discussion tool for education. International Journal of Artificial Intelligence in Education, 9, 219–236.

    Google Scholar 

  • Rolf, B., & Magnusson, C. (2002). Developing the art of argumentation. A software approach. In Proceedings of the 5th International Conference on Argumentation. International Society for the Study of Argumentation (ISSA-2002) (pp. 919–926).

  • Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. Journal of the Learning Sciences, 2(3), 235–276.

    Google Scholar 

  • Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 3(3), 237–271.

    Google Scholar 

  • Roth, W.-M. (2000). From gesture to scientific language. Journal of Pragmatics, 32(11), 1683–1714.

    Google Scholar 

  • Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting collaborative problem-solving in computer-mediated settings. Journal of the Learning Sciences, 14(2), 201–241.

    Google Scholar 

  • Schank, P. (1995). Computational tools for modeling and aiding reasoning: Assessing and applying the theory of explanatory coherence. Doctoral dissertation. University of California, Berkeley. (University Microfilms No. 9621352).

  • Schellens, T., van Keer, H., de Wever, B., & Valcke, M. (2007). Scripting by assigning roles: Does it improve knowledge construction in asynchronous discussion groups? International Journal of Computer Supported Collaborative Learning (ijCSCL), 2(2–3), 225–246.

    Google Scholar 

  • Schneider, D. C., Voigt, C., & Betz, G. (2007). ArguNet—a software tool for collaborative argumentation analysis and research. Paper presented at the 7th Workshop on Computational Models of Natural Argument (CMNA VII).

  • Schwarz, B. B., & Glassner, A. (2003). The blind and the paralytic: Fostering argumentation in social and scientific issues. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 227–260). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Schwarz, B. B., & Glassner, A. (2007). The role of floor control and of ontology in argumentative activities with discussion-based tools. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(4), 449–478.

    Google Scholar 

  • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.

    Google Scholar 

  • Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.

    Google Scholar 

  • Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International Journal of Artificial Intelligence in Education, 12, 40–62.

    Google Scholar 

  • Soller, A. (2004). Computational modeling and analysis of knowledge sharing in collaborative distance learning. User Modeling and User-Adapted Interaction, 14(4), 351–381.

    Google Scholar 

  • Soller, A., Goodman, B. A., Linton, F., & Gaimari, R. (1998). Promoting effective peer interaction in an intelligent collaborative learning system. In B. P. Goettl, H. M. Halff, C. L. Redfield, & V. J. Shute (Eds.), Proceedings of the 4th International Conference on Intelligent Tutoring Systems (ITS 1998) (pp. 186–195). Berlin: Springer.

    Google Scholar 

  • Soller, A., Monés, A. M., Jermann, P., & Mühlenbrock, M. (2005). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. International Journal on Artificial Intelligence in Education, 15, 261–290.

    Google Scholar 

  • Stahl, G. (2007). CSCL and its flash themes. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(4), 359–362.

    Google Scholar 

  • Stegmann, K., Weinberger, A., & Fischer, F. (2007). Facilitating argumentative knowledge construction with computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning (ijCSCL), 2(4), 421–447.

    Google Scholar 

  • Suthers, D. D. (2001). Architectures for computer supported collaborative learning. In Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT 2001) (pp. 25–28), Madison.

  • Suthers, D. D. (2003). Representational guidance for collaborative inquiry. In J. Andriessen, M. J. Baker, & D. D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 27–46). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Suthers, D. D., & Hundhausen, C. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. Journal of the Learning Sciences, 12(2), 183–219.

    Google Scholar 

  • Suthers, D. D., Weiner, A., Connelly, J., & Paolucci, M. (1995). Belvedere: Engaging students in critical discussion of science and public policy issues. In J. Greer (Ed.), Proceedings of the 7th World Conference on Artificial Intelligence in Education (AI-ED 1995) (pp. 266–273). Charlottesville: Association for the Advancement of Computing in Education.

    Google Scholar 

  • Suthers, D. D., Toth, E., & Weiner, A. (1997). An integrated approach to implementing collaborative inquiry in the classroom. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of the 2nd International Conference on Computer Support for Collaborative Learning (CSCL 1997) (pp. 272–279). Toronto: University of Toronto Press.

    Google Scholar 

  • Suthers, D. D., Connelly, J., Lesgold, A., Paolucci, M., Toth, E. E., Toth, J., et al. (2001). Representational and advisory guidance for students learning scientific inquiry. In K. D. Forbus & P. J. Feltovich (Eds.), Smart machines in education: The coming revolution in educational technology (pp. 7–35). Menlo Park: AAAI/MIT.

    Google Scholar 

  • Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103–1127.

    Google Scholar 

  • Taentzer, G. (2001). Towards common exchange formats for graphs and graph transformation systems. Electronic Notes in Theoretical Computer Science, 44(4), 28–40.

    Google Scholar 

  • Tannen, D. (1998). The argument culture: Moving from debate to dialogue. New York: Random House Trade.

    Google Scholar 

  • Tedesco, P. (2003). MArCo: Building an artificial conflict mediator to support group planning interactions. International Journal of Artificial Intelligence in Education, 13, 117–155.

    Google Scholar 

  • Thagard, P. (2006). Evaluating explanations in law, science, and everyday life. Current Directions in Psychological Science, 15(3), 141–145.

    Google Scholar 

  • Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tsovaltzi, D., Rummel, N., McLaren, B. M., Pinkwart, N., Scheuer, O., Harrer, A., et al. (2010). Extending a virtual chemistry laboratory with a collaboration script to promote conceptual learning. International Journal of Technology Enhanced Learning (IJTEL), 2(1–2), 91–110.

    Google Scholar 

  • van den Braak, S., & Vreeswijk, G. (2006). AVER: Argument visualization for evidential reasoning. In T. M. van Engers (Ed.), Proceedings of the 19th Conference on Legal Knowledge and Information Systems (JURIX 2006) (pp. 151–156). Amsterdam: IOS.

    Google Scholar 

  • van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation: The Pragma-Dialectical Approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • van Gelder, T. (2002). Argument mapping with Reason!Able. The American Philosophical Association Newsletter on Philosophy and Computers, 2(1), 85–90.

    Google Scholar 

  • van Gelder, T. (2003). Enhancing deliberation through computer-supported argument visualization. In P. A. Kirschner, S. J. Buckingham-Shum, & C. S. Carr (Eds.), Visualizing argumentation: Software tools for collaborative and educational sense-making (pp. 97–115). London: Springer.

    Google Scholar 

  • van Gelder, T. (2007). The rationale for rationale. Law, Probability and Risk, 6(1–4), 23–42.

    Google Scholar 

  • VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227–265.

    Google Scholar 

  • Vizcaino, A., Contreras, J., Favela, J., & Prieto, M. (2000). An adaptive, collaborative environment to develop good habits in programming. In G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Proceedings of the 5th International Conference on Intelligent Tutoring Systems (ITS 2000) (pp. 262–271). Berlin: Springer.

    Google Scholar 

  • Verheij, B. (2003). Artificial argument assistants for defeasible argumentation. Artificial Intelligence, 150(1–2), 291–324.

    Google Scholar 

  • Voss, J. F. (2006). Toulmin’s model and the solving of ill-structured problems. In D. Hitchcock & B. Verheij (Eds.), Arguing on the Toulmin model: New essays in argument analysis and evaluation (pp. 303–311). Berlin: Springer.

    Google Scholar 

  • Walton, D. (2008). Informal logic: A pragmatic approach (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95.

    Google Scholar 

  • Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos: Kaufmann.

    Google Scholar 

  • Whitehead, A. N., & Russell, B. (1910). Principia Mathematica. Cambridge: The University Press.

    Google Scholar 

  • Wigmore, J. H. (1931). The principles of judicial proof (2nd ed.). Boston: Little, Brown & Co.

    Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). San Francisco: Kaufmann.

    Google Scholar 

  • Woolf, B. P., Murray, T., Marshall, D., Dragon, T., Kohler, K., Mattingly, M., et al. (2005). Critical thinking environments for science education. In C. K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds.), Proceedings of the 12th International Conference on Artificial Intelligence and Education (AI-ED 2005) (pp. 702–709). Amsterdam: IOS.

    Google Scholar 

Download references

Acknowledgment

We would like to thank the German Research Foundation (DFG) for providing support for this research under the grant “LASAD - Learning to Argue, Support Across Domains.” Also, we want to thank the researchers and developers of the argumentation systems that we reviewed for their feedback in email surveys, and the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Scheuer.

Appendix: Overview of reviewed tools

Appendix: Overview of reviewed tools

Our review covered the systems, methods, and studies shown in the table below. In the rightmost column, in brackets, we provide the number of citations to the main paper of each system, based on a Google Scholar (http://scholar.google.com) as an indicator of the influence of each system. This Google search was done in October and November 2009. All URLs were last visited on 2009-10-27.

No

Tool

Feature description

Reference [#]

1

AcademicTalk

collaborative, educational, sentence openers, based on dialogue game theory

McAlister et al. 2004 [56] http://www.londonmet.ac.uk/ltri/research/projects/at.htm

2

Aquanet

collaborative, configurable ontology

Marshall et al. 1991 [216]

3

Araucaria

transcript, argument schemes, central database for argument exchange

Reed and Rowe 2004 [96] http://Araucaria.computing.dundee.ac.uk

4

Argue/ArguMed

argument assistance, legal domain

Verheij 2003 [66] http://www.ai.rug.nl/∼verheij/aaa/argumed3.htm

5

ArguNet

collaborative, Web-based

Schneider et al. 2007 [-] http://www.argunet.org

6

ARGUNAUT

educational, support system for human moderators, used with Digalo

De Groot et al. 2007 [12], McLaren et al. in press [-] http://www.argunaut.org

7

Athena

educational, report generator

Rolf and Magnusson 2002 [30] http://www.athenasoft.org

8

AVER

criminal investigations

van den Braak and Vreeswijk 2006 [5]

9

AVERs

criminal investigations

Bex et al. 2007 [13]

10

Belvedere v1 and v2

educational, collaborative, ITS, scientific/evidential reasoning

Suthers et al. 1995 [163], Suthers et al. 2001 [43]

11

Belvedere v3 and v4

educational, collaborative, multiple views, scientific /evidential reasoning

Suthers 2003 [39] http://lilt.ics.hawaii.edu/lilt/software/belvedere

12

BetterBlether

educational, collaborative, sentence openers

Robertson et al. 1998 [67]

13

Carneades

support of multiple proof-standards, IBIS

Gordon et al. 2007 [58] http://carneades.berlios.de

14

CoChemEx

educational, collaborative, inquiry learning, chemistry, scripted

Tsovaltzi et al. 2010 [-]

15

CoFFEE

educational, collaborative, multiple tools, configurable

Belgiorno et al. 2008 [1] http://www.coffee-soft.org/

16

Collaboratorium

collaborative, IBIS

Klein and Iandoli 2008 [1], Malone and Klein 2007 [6] http://cci.mit.edu/research/climate.html

17

Collect-UML

Educational, collaborative, problem solving, UML diagrams, ITS

Baghaei et al. 2007 [6]

18

Compendium

successor of Questmap, collaborative, IBIS

Buckingham Shum et al. 2006 [54], Okada and Buckingham Shum 2008 [1] http://compendium.open.ac.uk

19

Convince Me

educational, model of coherent reasoning

Ranney and Schank 1998 [26] http://www.soe.berkeley.edu/∼schank/convinceme

20

CoPe_it!

successor of Hermes, (also) educational, collaborative, multiple views, support of multiple proof-standards, decision support, IBIS

Karacapilidis 2009 [-]

21

CycleTalk Chat Environment

educational, collaborative, problem solving, thermodynamics, tutorial dialogues

Kumar et al. 2007 [22]

22

DebateGraph

collaborative, local views

http://www.debategraph.org

23

Debatepedia

collaborative, wiki-based

http://wiki.idebate.org

24

Digalo

educational, collaborative, configurable ontology

Schwarz and Glassner 2007 [4] http://www.dunes.gr

25

DREW

educational, collaborative, multiple tools

Corbel et al. 2002 [18]

26

Epsilon (with tutorial agent Pierce)

educational, collaborative, problem solving, OMT diagrams, sentence openers, interaction analysis, tutorial feedback, group and student model

Goodman et al. 2005 [28]

27

Epsilon (interaction analysis)

educational, collaborative, problem solving, OMT diagrams, sentence openers, interaction analysis

Soller 2001 [214]; Soller 2004 [38]

28

Group Leader Tutor

educational, collaborative, sentence openers, Group Leader agent to facilitate interaction

McManus and Aiken 1995 [100]; Israel and Aiken 2007 [3]

29

Hermes

collaborative, support of multiple proof-standards, decision support, IBIS

Karacapilidis and Papadias 2001 [128] http://www-sop.inria.fr/aid/hermes

30

IBIS/gIBIS

collaborative, notational support to solve wicked problems

Conklin and Begeman 1988 [1310]

31

iLogos

educational, causal diagrams

Easterday et al. 2007 [4] http://www.phil.cmu.edu/projects/argument_mapping

32

Interloc

successor of AcademicTalk, educational, collaborative, sentence openers, configurable dialogue games

Ravenscroft et al. 2008 [1] http://www.interloc.org

33

KIE/SenseMaker, WISE

educational; container visualization, inquiry learning, science learning

Bell 1997 [142]; Bell and Linn 2000 [222], Linn et al. 2003 [89] http://tels.sourceforge.net/sensemaker

34

LARGO

educational; legal argumentation, ITS

Pinkwart et al. 2006a [23]

35

LASAD

educational, collaborative, flexible/configurable architecture, intelligent support

Loll et al. 2009 [-] http://cscwlab.in.tu-clausthal.de/lasad/

36

Legalese

legal argumentation

Hair 1991 [10]

37

Pedabot

educational, support for technical discussion boards by IR

Kim et al. 2008 [4]

38

Questmap

collaborative, IBIS

Carr 2003 [32]

39

Rashi/Human Biology Inquiry Tutor

educational, ITS, inquiry learning, multiple tools

Woolf et al. 2005 [4]

40

Rationale

educational, multiple argument modes

Van Gelder 2007 [8] http://rationale.austhink.com

41

Reason!Able

educational

Van Gelder 2002 [22], Van Gelder 2003 [35]

42

Room 5

collaborative, legal argumentation, implements dialogue game

Loui et al. 1997 [54]

43

SEAS

decision support, argument templates; table, starburst and constellation depictions of multidimensional arguments

Lowrance 2007 [4], Lowrance et al. 2008 [4] http://www.ai.sri.com/∼seas

44

TC3

educational, collaborative, tool suite to support collaborative writing of argumentative texts

Munneke et al. 2003 [14]

45

Zeno

Predecessor of Carneades and Hermes, support of multiple proof-standards, decision support, IBIS

Gordon and Karacapilidis 1997 [213]

46

educational, collaborative

Jeong 2003 [115]

47

educational, collaborative, argumentation vee diagrams

Nussbaum et al. 2007 [2]

48

educational, collaborative, scripting by roles approach

Schellens et al. 2007 [3]

49

educational, collaborative, micro-scripting, Toulmin-based

Stegmann et al. 2007 [16]

50

educational, collaborative, integration of conceptual and discourse representations, uses Belvedere

Suthers et al. 2008 [37]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheuer, O., Loll, F., Pinkwart, N. et al. Computer-supported argumentation: A review of the state of the art. Computer Supported Learning 5, 43–102 (2010). https://doi.org/10.1007/s11412-009-9080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11412-009-9080-x

Keywords

Navigation