Skip to main content
Erschienen in: International Journal of Computer-Supported Collaborative Learning 1/2016

01.03.2016

Tracing the change in discourse in a collaborative dynamic geometry environment: From visual to more mathematical

verfasst von: Diler Oner

Erschienen in: International Journal of Computer-Supported Collaborative Learning | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This case study investigated the development of group cognition by tracing the change in mathematical discourse of a team of three middle-school students as they worked on a construction problem within a virtual collaborative dynamic geometry environment. Sfard’s commognitive framework was employed to examine how the student team’s word choice, use of visual mediators, and adoption of geometric construction routines changed character during an hour-long collaborative problem-solving session. The findings indicated that the team gradually moved from a visual discourse toward a more formal discourse—one that is primarily characterized by a routine of constructing geometric dependencies. This significant shift in mathematical discourse was accomplished in a CSCL setting where tools to support peer collaboration and pedagogy are developed through cycles of design-based research. The analysis of how this discourse development took place at the group level has implications for the theory and practice of computer-supported collaborative mathematical learning. Discussion of which features of the specific setting proved effective and which were problematic suggests revisions in the design of the setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The full log for Session 3 is available at: http://​gerrystahl.​net/​vmt/​icls2014/​Topic3.​xlsx. The VMT Player is available at: http://​gerrystahl.​net/​vmt/​icls2014/​vmtPlayer.​jnlp. The replayer file for Session 3 is available at: http://​gerrystahl.​net/​vmt/​icls2014/​Topic3.​jno.
 
2
The instructions specified that, “point H is an arbitrary point on line FG.” In Euclidean geometry, that would mean that even though H can be any point on line FG, it is not something that moves. Thus, although one looks for a solution that would work for any point H, any treatment of H would be static. In dynamic geometry, however, an arbitrary point H is a free point that can be dragged along line FG. Thus, there is some legitimacy to the students’ solution. Ultimately, however, the solution fails the drag test of dynamic geometry. If one properly constructs the perpendicular through point H, then one should be able to drag point H along line FG and have the perpendicular to FG move with it so that it always passes through H and remains perpendicular to FG. Cheerios, however, had only dragged their final construction by moving point G.
 
3
In a similar analysis of all eight sessions of the Cereal Team, Stahl (2016) conceptualizes the development of the group’s mathematical cognition in terms of the successive adoption of group practices, rather than routines, in order to emphasize that they are being theorized as group-level rather than individual phenomena. As illustrated in the six episodes here, the Cereal Team questions, negotiates, and adopts new practices through their discourse (including shared GeoGebra actions). This meaning-making process creates a shared understanding within the team. Once the team agrees to use a routine, it may become a group practice, which can be used in the future without further discussion.
 
Literatur
Zurück zum Zitat Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. The Journal of the Learning Sciences, 9(4), 403–436.CrossRef Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. The Journal of the Learning Sciences, 9(4), 403–436.CrossRef
Zurück zum Zitat Berkowitz, M., & Gibbs, J. (1985). The process of moral conflict resolution and moral development. In M. Berkowitz (Ed.), Peer conflict and psychological growth (pp. 71–84). San Francisco: Jossey Bass. Berkowitz, M., & Gibbs, J. (1985). The process of moral conflict resolution and moral development. In M. Berkowitz (Ed.), Peer conflict and psychological growth (pp. 71–84). San Francisco: Jossey Bass.
Zurück zum Zitat Chazan, D. (1993a). Instructional implications of students’ understanding of the differences between empirical verification and mathematical proof. In J. L. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), The geometric supposer: What is it a case of? (pp. 107–116). Hillsdale, N.J: Lawrence Erlbaum Associates. Chazan, D. (1993a). Instructional implications of students’ understanding of the differences between empirical verification and mathematical proof. In J. L. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), The geometric supposer: What is it a case of? (pp. 107–116). Hillsdale, N.J: Lawrence Erlbaum Associates.
Zurück zum Zitat Chazan, D. (1993b). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24, 359–387.CrossRef Chazan, D. (1993b). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24, 359–387.CrossRef
Zurück zum Zitat Chazan, D., & Yerushalmy, M. (1998). Charting a course for secondary geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 67–90). Hillsdale, N.J.: Lawrence Erlbaum Associates. Chazan, D., & Yerushalmy, M. (1998). Charting a course for secondary geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 67–90). Hillsdale, N.J.: Lawrence Erlbaum Associates.
Zurück zum Zitat Coe, R., & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics students. British Educational Research Journal, 20(1), 41–53.CrossRef Coe, R., & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics students. British Educational Research Journal, 20(1), 41–53.CrossRef
Zurück zum Zitat Ellis, A. E., Lockwood, E., Williams, C. C. W., Dogan, M. F., & Knuth, E. (2012). Middle school students’ example use in conjecture exploration and justification. In L.R. Van Zoest, J.J. Lo, & J.L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of the North American Chapter of the Psychology of Mathematics Education (Kalamazoo, MI). Ellis, A. E., Lockwood, E., Williams, C. C. W., Dogan, M. F., & Knuth, E. (2012). Middle school students’ example use in conjecture exploration and justification. In L.R. Van Zoest, J.J. Lo, & J.L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of the North American Chapter of the Psychology of Mathematics Education (Kalamazoo, MI).
Zurück zum Zitat Gattegno, C. (1988). The awareness of mathematization. New York: Educational Solutions [also available as chapters 10–12 of Science of Education, part 2B]. Gattegno, C. (1988). The awareness of mathematization. New York: Educational Solutions [also available as chapters 10–12 of Science of Education, part 2B].
Zurück zum Zitat Hadas, N., Hershkowitz, R., & Schwarz, B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44, 127–150.CrossRef Hadas, N., Hershkowitz, R., & Schwarz, B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44, 127–150.CrossRef
Zurück zum Zitat Harel, G., & Sowder, L. (1998). Students’ proof schemes. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research on Collegiate Mathematics Education (Vol. III, pp. 234–283). Providence, RI: American Mathematical Society.CrossRef Harel, G., & Sowder, L. (1998). Students’ proof schemes. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), Research on Collegiate Mathematics Education (Vol. III, pp. 234–283). Providence, RI: American Mathematical Society.CrossRef
Zurück zum Zitat Hölzl, R. (1995). Between drawing and figure. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 117–124). Berlin: Springer.CrossRef Hölzl, R. (1995). Between drawing and figure. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 117–124). Berlin: Springer.CrossRef
Zurück zum Zitat Hölzl, R. (1996). How does “dragging” affect the learning of geometry. International Journal of Computers for Mathematical Learning, 1(2), 169–187.CrossRef Hölzl, R. (1996). How does “dragging” affect the learning of geometry. International Journal of Computers for Mathematical Learning, 1(2), 169–187.CrossRef
Zurück zum Zitat Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Dordrecht: Kluwer. Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Dordrecht: Kluwer.
Zurück zum Zitat Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55–85.CrossRef Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55–85.CrossRef
Zurück zum Zitat Laborde, C. (2004). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education (pp. 1–21). Dordrecht: Kluwer Academic Publishers. Laborde, C. (2004). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education (pp. 1–21). Dordrecht: Kluwer Academic Publishers.
Zurück zum Zitat Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87–125.CrossRef Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87–125.CrossRef
Zurück zum Zitat Oner, D. (2013). Analyzing group coordination when solving geometry problems with dynamic geometry software. International Journal of Computer Supported Collaborative Learning, 8(1), 13–39.CrossRef Oner, D. (2013). Analyzing group coordination when solving geometry problems with dynamic geometry software. International Journal of Computer Supported Collaborative Learning, 8(1), 13–39.CrossRef
Zurück zum Zitat Patton, M. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, CA: Sage. Patton, M. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, CA: Sage.
Zurück zum Zitat Roschelle, J., & Teasley, S. (1995). The construction of shared knowledge in collaborative problem solving. In C. O’Malley (Ed.), Computer-supported collaborative learning (pp. 69–197). Berlin: Springer Verlag.CrossRef Roschelle, J., & Teasley, S. (1995). The construction of shared knowledge in collaborative problem solving. In C. O’Malley (Ed.), Computer-supported collaborative learning (pp. 69–197). Berlin: Springer Verlag.CrossRef
Zurück zum Zitat Ryve, A., Nilsson, P., & Pettersson, K. (2013). Analyzing effective communication in mathematics group work: the role of visual mediators and technical terms. Educational Studies in Mathematics, 82(3), 497–514. Ryve, A., Nilsson, P., & Pettersson, K. (2013). Analyzing effective communication in mathematics group work: the role of visual mediators and technical terms. Educational Studies in Mathematics, 82(3), 497–514.
Zurück zum Zitat Schoenfeld, A. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. Educational Psychologist, 23(2), 145–166. Schoenfeld, A. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. Educational Psychologist, 23(2), 145–166.
Zurück zum Zitat Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, MA: MIT Press.CrossRef Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, MA: MIT Press.CrossRef
Zurück zum Zitat Shaffer, D. W., & Kaput, J. J. (1999). Mathematics and virtual culture: an evolutionary perspective on technology and mathematics education. Educational Studies in Mathematics, 37, 97–119. Shaffer, D. W., & Kaput, J. J. (1999). Mathematics and virtual culture: an evolutionary perspective on technology and mathematics education. Educational Studies in Mathematics, 37, 97–119.
Zurück zum Zitat Sinclair, N., & Moss, J. (2012). The more it changes, the more it becomes the same: the development of the routine of shape identification in dynamic geometry environment. International Journal of Educational Research, 51–52, 28–44. Sinclair, N., & Moss, J. (2012). The more it changes, the more it becomes the same: the development of the routine of shape identification in dynamic geometry environment. International Journal of Educational Research, 51–52, 28–44.
Zurück zum Zitat Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge, MA: MIT Press. Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge, MA: MIT Press.
Zurück zum Zitat Stahl, G. (2009). Studying virtual math teams. New York, NY: Springer. Stahl, G. (2009). Studying virtual math teams. New York, NY: Springer.
Zurück zum Zitat Stahl, G. (2013a). Translating Euclid: Creating a human-centered mathematics. San Rafael, CA: Morgan & Claypool Publishers. Stahl, G. (2013a). Translating Euclid: Creating a human-centered mathematics. San Rafael, CA: Morgan & Claypool Publishers.
Zurück zum Zitat Stahl, G. (2016). Constructing dynamic triangles together: The development of mathematical group cognition. Cambridge, UK: Cambridge University Press. Stahl, G. (2016). Constructing dynamic triangles together: The development of mathematical group cognition. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat Stake, R. E. (1978). The case study method in social inquiry. Educational Researcher, 7(2), 5–8.CrossRef Stake, R. E. (1978). The case study method in social inquiry. Educational Researcher, 7(2), 5–8.CrossRef
Zurück zum Zitat Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics instruction - the Wiskobas Project. Dordrecht, the Netherlands: Reidel Publishing Company. Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics instruction - the Wiskobas Project. Dordrecht, the Netherlands: Reidel Publishing Company.
Zurück zum Zitat Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic. Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic.
Zurück zum Zitat Wheeler, D. (1982). Mathematization matters. For the Learning of Mathematics, 3(1), 45–47. Wheeler, D. (1982). Mathematization matters. For the Learning of Mathematics, 3(1), 45–47.
Metadaten
Titel
Tracing the change in discourse in a collaborative dynamic geometry environment: From visual to more mathematical
verfasst von
Diler Oner
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
International Journal of Computer-Supported Collaborative Learning / Ausgabe 1/2016
Print ISSN: 1556-1607
Elektronische ISSN: 1556-1615
DOI
https://doi.org/10.1007/s11412-016-9227-5

Weitere Artikel der Ausgabe 1/2016

International Journal of Computer-Supported Collaborative Learning 1/2016 Zur Ausgabe