Skip to main content
Log in

Eigenvalue approximation from below using non-conforming finite elements

  • Articles
  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

This is a survey article about using non-conforming finite elements in solving eigenvalue problems of elliptic operators, with emphasis on obtaining lower bounds. In addition, this article also contains some new materials for eigenvalue approximations of the Laplace operator, which include: 1) the proof of the fact that the non-conforming Crouzeix-Raviart element approximates eigenvalues associated with smooth eigenfunctions from below; 2) the proof of the fact that the non-conforming EQ rot1 element approximates eigenvalues from below on polygonal domains that can be decomposed into rectangular elements; 3) the explanation of the phenomena that numerical eigenvalues λ 1,h and λ 3,h of the non-conforming Q rot1 element approximate the true eigenvalues from below for the L-shaped domain. Finally, we list several unsolved problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentano M G, Duran R G. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron Trans Numer Anal, 2004, 17: 92–101

    MathSciNet  Google Scholar 

  2. Babuška I, Osborn J. Eigenvalue Problems. In: Finite Element Methods (Part 1), Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis, Vol. 2. North-Holand: Elsevier Science Publishers, 1991, 640–787

    Google Scholar 

  3. Chen C M, Huang Y Q. High Accuracy Theory of Finite Element Methods. Changsha: Hunan Science & Technology Publisher, 1995

    Google Scholar 

  4. Chen Z, Yang Y D. The global stress superconvergence of Wilson’s brick. Numer Math Chinese Univ, 2005, 27: 301–305

    Google Scholar 

  5. Ciarlet P G. Basic Error Estimates for Elliptic Problems. In: Finite Element Methods (Part 1), Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis, Vol. 2. North-Holand: Elsevier Science Publishers, 1991, 21–343

    Google Scholar 

  6. Lin Q, Lin J F. Finite Element Methods: Accuracy and Improvement. Beijing: Science Press, 2006

    Google Scholar 

  7. Lin Q, Tobiska L, Zhou A. Superconvergence and extrapolation of nonconforming low order finite elements applied to the poisson equation. IMA J Numer Anal, 2005, 25: 160–181

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu H P, Yan N N. Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chinese J Numer Meth Comput Appl, 2005, 2: 81–91

    MathSciNet  Google Scholar 

  9. Rannacher R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer Math, 1979, 33: 23–42

    Article  MATH  MathSciNet  Google Scholar 

  10. Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Methods Partial Differential Equations, 1992, 8: 97–111

    Article  MATH  MathSciNet  Google Scholar 

  11. Shi Z C. A remark on the optimal order of convergence of Wilson’s nonconforming element. Math Numer Sin, 1986, 2: 159–163

    Google Scholar 

  12. Strang G, Fix G J. An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall, 1973

    MATH  Google Scholar 

  13. Weinstein A, Chien W Z. On the vibrations of a clamped plate under tension. Quart Appl Math, 1943, 1: 61–68

    MATH  MathSciNet  Google Scholar 

  14. Yang Y D. A posteriori error estimates in Adini finite element for eigenvalue problems. J Comput Math, 2000, 18: 413–418

    MATH  MathSciNet  Google Scholar 

  15. Yang Y D, Chen Z. The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators. Sci China Ser A, 2008, 51: 1232–1242

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhang Z M, Yang Y D, Chen Z. Eigenvalue approximation from below by Wilson’s element. Chinese J Numer Math Appl, 2007, 29: 81–84

    MathSciNet  Google Scholar 

  17. Zhu Q D, Lin Q. Superconvergence Theory of Finite Element Methods. Changsha: Hunan Science & Technology Publisher, 1989

    Google Scholar 

  18. Zienkiewicz O C, Cheung Y K. The Finite Element Method in Structrural and Continuum Mechanics. New York: McGraw-Hill, 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiMin Zhang.

Additional information

This work was supported by National Natural Science Foundation of China (Grant No. 10761003) and the US National Science Foundation (Grant No. DMS-0612908).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Zhang, Z. & Lin, F. Eigenvalue approximation from below using non-conforming finite elements. Sci. China Ser. A-Math. 53, 137–150 (2010). https://doi.org/10.1007/s11425-009-0198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0198-0

Keywords

MSC(2000)

Navigation