Skip to main content
Log in

A three level linearized compact difference scheme for the Cahn-Hilliard equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This article is devoted to the study of high order accuracy difference methods for the Cahn-Hilliard equation. A three level linearized compact difference scheme is derived. The unique solvability and unconditional convergence of the difference solution are proved. The convergence order is O(τ 2 + h 4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N D, Bates P W, Chen X. Convergence of the Cahn-Hilliard equation to the Hele-shaw model. Arch Ration Mech Anal, 1994, 128: 165–205

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett J, Blowey J. An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer Math, 1995, 72: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett J, Blowey J. Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math Comput, 1999, 68: 487–517

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartels S. A posteriori error analysis for time-dependent Ginzburg-Landau type equations. Numer Math, 2005, 99: 557–583

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartels S, Müller R. A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound, 2010, 12: 45–73

    Article  MathSciNet  MATH  Google Scholar 

  6. Baňas L, Nürnberg R. Adaptive finite element methods for Cahn-Hilliard equations. J Comput Appl Math, 2008, 218: 2–11

    Article  MathSciNet  MATH  Google Scholar 

  7. Baňnas L, Nürnberg R. A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy. Math Model Numer Anal, 2009, 43: 1003–1026

    Article  Google Scholar 

  8. Blowey J, Elliott C. The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. European J Appl Math, 1991, 2: 233–279

    Article  MathSciNet  MATH  Google Scholar 

  9. Burger M, Chu S Y, Markowich P A, et al. The Willmore functional and instabilities in the Cahn-Hilliard equation. Commun Math Sci, 2008, 6: 309–329

    MathSciNet  MATH  Google Scholar 

  10. Cahn J W, Hilliard J E. Free energy of nonuniform system, I. Interfacial free energy. J Chem Phys, 1958, 28: 258–267

    Article  Google Scholar 

  11. Chai S M, Zou Y K, Gong C C. Spectral method for a class of Cahn-Hilliard equation with nonconstant mobility. Commun Math Res, 2009, 25: 9–18

    MathSciNet  MATH  Google Scholar 

  12. Chen X. Global asymptotic limit of solutions of the Cahn-Hilliard equation. J Differential Geom, 1996, 44: 262–311

    MathSciNet  MATH  Google Scholar 

  13. Choo S M, Chung S K. Conservative nonlinear difference scheme for the Cahn-Hilliard equation. Comput Math Appl, 1998, 36: 31–39

    Article  MathSciNet  MATH  Google Scholar 

  14. Choo S M, Chung S K, Kim K I. Conservative nonlinear difference scheme for the Cahn-Hilliard equation, II. Comput Math Appl, 2000, 39: 229–243

    Article  MathSciNet  MATH  Google Scholar 

  15. Copetti M, Elliott C. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer Math, 1992, 63: 39–65

    Article  MathSciNet  MATH  Google Scholar 

  16. Du Q, Nicolaides R A. Numerical analysis of a continuum model of phase transtion. SIAM J Numer Anal, 1991, 28: 1310–1322

    Article  MathSciNet  MATH  Google Scholar 

  17. Elliott C. The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues J, ed. Mathematical Models for Phase Change Problems. International Series of Numerical Mathematics, vol. 88. Basel: Birkhäser, 1989, 35–73

    Chapter  Google Scholar 

  18. Elliott C, French D. Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J Appl Math, 1987, 38: 97–128

    Article  MathSciNet  MATH  Google Scholar 

  19. Elliott C, Garcke H. On the Cahn-Hilliard equation with degenerate mobility. SIAM J Math Anal, 1996, 27: 404–423

    Article  MathSciNet  MATH  Google Scholar 

  20. Elliott C M, Luckhaus S. Ageneralized equation for phase separation of a multi-component mixture with interfacial free energy. IMA Preprint Series, 887. Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota, 1991

    Google Scholar 

  21. Elliott C M, French D. Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J Appl Math, 1987, 38: 97–128

    Article  MathSciNet  MATH  Google Scholar 

  22. Elliott C, Zheng S. On the Cahn-Hilliard equation. Arch Ration Mech Anal, 1986, 96: 339–357

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng W M, Yu P, Hu S Y, et al. A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity. Commun Comput Phys, 2009, 5: 582–599

    MathSciNet  Google Scholar 

  24. Feng X, Karakashian O A. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math Comput, 2007, 76: 1093–1117

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng X, Prohl A. Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer Math, 2004, 99: 47–84

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng X, Wu H J. A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. J Sci Comput, 2005, 24: 121–146

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng X, Wu H J. A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow. J Comput Math, 2008, 26: 767–796

    MathSciNet  MATH  Google Scholar 

  28. Furihata D. A stable and conservation finite difference scheme for the Cahn-Hilliard equation. Numer Math, 2001, 87: 675–699

    Article  MathSciNet  MATH  Google Scholar 

  29. He C Y, Zhang F Y. The long-time behavior of Four pseudo-spectral method of the nonlinear Cahn-Hilliard equation. J Natur Sci Heilongjiang Univ, 2006, 23: 779–786

    MathSciNet  Google Scholar 

  30. He L P. Error estimation of a class of stable spectral approximation to the Cahn-Hilliard equation. J Sci Comput, 2009, 41: 461–482

    Article  MathSciNet  MATH  Google Scholar 

  31. He L P, Liu Y X. A class of stable spectral methods for the Cahn-Hilliard equation. J Comput Phys, 2009, 228: 5101–5110

    Article  MathSciNet  MATH  Google Scholar 

  32. He Y N, Liu Y X. Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation. Numer Methods Partial Differ Equ, 2008, 24: 1485–1500

    Article  MathSciNet  MATH  Google Scholar 

  33. Kay D, Styles V, Süli E. Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J Numer Anal, 2009, 47: 2660–2685

    Article  MathSciNet  MATH  Google Scholar 

  34. Kessler D, Nochetto R H, Schmidt A. A posteriori error control for the Allen-Cahn problem: Circumventing Gronwalls inequality. Math Model Numer Anal, 2004, 38: 129–142

    Article  MathSciNet  MATH  Google Scholar 

  35. Khiari N, Achouri T, Ben Mohamed M L, et al. Finite difference approximate solutions for the Cahn-Hilliard equation. Numer Methods Partial Differ Equ, 2007, 23: 437–455

    Article  MATH  Google Scholar 

  36. Nicolaenko B, Scheurer B, Temam R. Some global dynamical properties of a class of pattern formation equations. Comm Partial Differ Equ, 1989, 14: 245–297

    Article  MathSciNet  MATH  Google Scholar 

  37. Novick-Cohen A. Energy methods for the Cahn-Hilliard equation. IMA Preprint, 1985, 157

  38. Pego R L. Front migration in the nonlinear Cahn-Hilliard equation. Proc R Soc London Ser A Math Phys Eng Sci, 1989, 422: 261–278

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun Z Z. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math Comput, 1995, 64: 1463–1471

    MATH  Google Scholar 

  40. Sun Z Z. On the compact difference scheme for heat equation with Neumann boundary conditions. Numer Methods Partial Differ Equ, 2009, 25: 1320–1341

    Article  MATH  Google Scholar 

  41. Wells G N, Kuhl E, Garikipati K. A discontinuous Galerkin method for the Cahn-Hilliard equation. J Comput Phys, 2006, 218: 860–877

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang X F. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28: 1669–1691

    Article  MathSciNet  MATH  Google Scholar 

  43. Ye X. The Fourier collocation method for the Cahn-Hilliard equation. Comput Math Appl, 2002, 44: 213–229

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye X, Cheng X. The Fourier spectral method for the Cahn-Hilliard equation. Appl Math Comput, 2005, 171: 345–357

    Article  MathSciNet  MATH  Google Scholar 

  45. Ye X D, Cheng X L. The Fourier spectral method for the Cahn-Hilliard equation. Appl Math Comput, 2005, 171: 345–357

    Article  MathSciNet  MATH  Google Scholar 

  46. Yin J. On the existence of nonnegative continuous solution of the Cahn-Hilliard equation. J Differ Equ, 1992, 97: 310–327

    Article  MATH  Google Scholar 

  47. Zhang T. Finite element analysis for the Cahn-Hilliard equation (in Chinese). Math Numer Sin, 2006, 28: 281–292

    MathSciNet  Google Scholar 

  48. Zhao R. High order accurate numerical methods for Cahn-Hilliard equations. Master’s Degree Thesis. Qingdao: Chinese Ocean University, 2009

    Google Scholar 

  49. Zhou Y L. Applications of Discrete Functional Analysis of Finite Difference Method. New York: International Academic Publishers, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiZhong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Sun, Z. & Zhao, X. A three level linearized compact difference scheme for the Cahn-Hilliard equation. Sci. China Math. 55, 805–826 (2012). https://doi.org/10.1007/s11425-011-4290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4290-x

Keywords

MSC(2000)

Navigation