Skip to main content
Log in

Super congruences and Euler numbers

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let p > 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that

$$\begin{gathered} \sum\limits_{k = 0}^{p - 1} {\frac{{\left( {_k^{2k} } \right)}} {{2^k }}} \equiv \left( { - 1} \right)^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} - p^2 E_{p - 3} \left( {\bmod p^3 } \right), \hfill \\ \sum\limits_{k = 1}^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} {\frac{{\left( {_k^{2k} } \right)}} {k}} \equiv \left( { - 1} \right)^{{{\left( {p + 1} \right)} \mathord{\left/ {\vphantom {{\left( {p + 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \frac{8} {3}pE_{p - 3} \left( {\bmod p^2 } \right), \hfill \\ \sum\limits_{k = 0}^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} {\frac{{\left( {_k^{2k} } \right)^2 }} {{16^k }}} \equiv \left( { - 1} \right)^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} + p^2 E_{p - 3} \left( {\bmod p^3 } \right), \hfill \\ \end{gathered}$$

where E 0,E 1,E 2, ... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π 2, π −2 and the constant \(K: = \sum\nolimits_{k = 1}^\infty {{{\left( {\tfrac{k} {3}} \right)} \mathord{\left/ {\vphantom {{\left( {\tfrac{k} {3}} \right)} {k^2 }}} \right. \kern-\nulldelimiterspace} {k^2 }}}\) (with (−) the Jacobi symbol), two of which are

$$\sum\limits_{k = 1}^\infty {\frac{{\left( {10k - 3} \right)8^k }} {{k^3 \left( {_k^{2k} } \right)^2 \left( {_k^{3k} } \right)}} = \frac{{\pi ^2 }} {2}} and \sum\limits_{k = 1}^\infty {\frac{{\left( {15k - 4} \right)\left( { - 27} \right)^{k - 1} }} {{k^3 \left( {_k^{2k} } \right)^2 \left( {_k^{3k} } \right)}} = K.}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlgren A. Gaussian hypergeometric series and combinatorial congruences. In: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Dev Math, vol. 4, Gainesville, FL, 1999, 1–12. Dordrecht: Kluwer, 2001

    Chapter  Google Scholar 

  2. Ahlgren S, Ono K. A Gaussian hypergeometric series evaluation and Apéry number congruences. J Reine Angew Math, 2000, 518: 187–212

    Article  MATH  MathSciNet  Google Scholar 

  3. Amdeberhan T, Zeilberger D. Hypergeometric series acceleration via the WZ method. Electron J Combin, 1997, 4: #R3

    MathSciNet  Google Scholar 

  4. Apéry R. Irrationalité de ξ(2) et ξ(3). Journees arithmétiques de Luminy. Astérisque, 1979, 61: 11–13

    MATH  Google Scholar 

  5. Baruah N D, Berndt B C. Eisenstein series and Ramanujan-type series for 1/π. Ramanujan J, 2010, 23: 17–44

    Article  MATH  MathSciNet  Google Scholar 

  6. Baruah N D, Berndt B C, Chan H H. Ramanujan’s series for 1/π: a survey. Amer Math Monthly, 2009, 116: 567–587

    Article  MathSciNet  Google Scholar 

  7. Berndt B C. Ramanujan’s Notebooks, Part IV. New York: Springer, 1994

    Book  MATH  Google Scholar 

  8. Beukers F. Another congruence for the Apéry numbers. J Number Theory, 1987, 25: 201–210

    Article  MATH  MathSciNet  Google Scholar 

  9. Cox D A. Primes of the Form x 2 + ny 2. New York: John Wiley & Sons, 1989

    Google Scholar 

  10. Glaisher J W L. Congruences relating to the sums of product of the first n numbers and to other sums of product. Quart J Math, 1900, 31: 1–35

    MATH  Google Scholar 

  11. Glaisher J W L. On the residues of the sums of products of the first p − 1 numbers, and their powers, to modulus p 2 or p 3. Quart J Math, 1900, 31: 321–353

    MATH  Google Scholar 

  12. Gould H W. Combinatorial Identities. New York: Morgantown Printing and Binding Co., 1972

    MATH  Google Scholar 

  13. Graham R L, Knuth D E, Patashnik O. Concrete Mathematics. 2nd ed. New York: Addison-Wesley, 1994

    MATH  Google Scholar 

  14. Ishikawa T. On Beukers’ congruence. Kobe J Math, 1989, 6: 49–52

    MATH  MathSciNet  Google Scholar 

  15. Kilbourn T. An extension of the Apéry number supercongruence. Acta Arith, 2006, 123: 335–348

    Article  MATH  MathSciNet  Google Scholar 

  16. Lehmer E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann Math, 1938, 39: 350–360

    Article  MathSciNet  Google Scholar 

  17. Long L. Hypergeometric evaluation identities and supercongruences. Pacific J Math, 2011, 249: 405–418

    Article  MATH  MathSciNet  Google Scholar 

  18. Matsumoto R. A collection of formulae for π. http://www.pluto.ai.kyutech.ac.jp/plt/matumoto/pi_small

  19. McCarthy D. On a supercongruence conjecture of Rodriguez-Villegas. Proc Amer Math Soc, in press

  20. McCarthy D, Osburn R. A p-adic analogue of a formula of Ramanujan. Archiv der Math, 2008, 91: 492–504

    Article  MATH  MathSciNet  Google Scholar 

  21. Morley F. Note on the congruence 24n ≡ (−1)n(2n)!/(n!)2, where 2n + 1 is a prime. Ann of Math, 1895, 9: 168–170

    Article  MATH  MathSciNet  Google Scholar 

  22. Mortenson E. A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J Number Theory, 2003, 99: 139–147

    Article  MATH  MathSciNet  Google Scholar 

  23. Mortenson E. Supercongruences between truncated 2 F 1 by geometric functions and their Gaussian analogs. Trans Amer Math Soc, 2003, 355: 987–1007

    Article  MATH  MathSciNet  Google Scholar 

  24. Mortenson E. Supercongruences for truncated n+1 F n hypergeometric series with applications to certain weight three newforms. Proc Amer Math Soc, 2005, 133: 321–330

    Article  MATH  MathSciNet  Google Scholar 

  25. Mortenson E. A p-adic supercongruence conjecture of van Hamme. Proc Amer Math Soc, 2008, 136: 4321–4328

    Article  MATH  MathSciNet  Google Scholar 

  26. Ono K. Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series. Providence, RI: Amer Math Soc, 2003

    Google Scholar 

  27. Osburn R, Schneider C. Gaussian hypergeometric series and supercongruences. Math Comp, 2009, 78: 275–292

    Article  MATH  MathSciNet  Google Scholar 

  28. Pan H. On a generalization of Carlitz’s congruence. Int J Mod Math, 2009, 4: 87–93

    MATH  MathSciNet  Google Scholar 

  29. Pan H, Sun Z W. A combinatorial identity with application to Catalan numbers. Discrete Math, 2006, 306: 1921–1940

    Article  MATH  MathSciNet  Google Scholar 

  30. Petkovšek M, Wilf H S, Zeilberger D. A = B.Wellesley: A K Peters, 1996

    Google Scholar 

  31. van der Poorten A. A proof that Euler missed...Apéry’s proof of the irrationality of ξ(3). Math Intelligencer, 1979, 1: 195–203

    Article  MATH  Google Scholar 

  32. Prodinger H. Human proofs of identities by Osburn and Schneider. Integers, 2008, 8: #A10, 8pp (electronic)

    MathSciNet  Google Scholar 

  33. Ramanujan S. Modular equations and approximations to π. Quart J Math (Oxford), 1914, 45: 350–372

    Google Scholar 

  34. Rodriguez-Villegas F. Hypergeometric families of Calabi-Yau manifolds. In: Calabi-Yau Varieties and Mirror Symmetry, Fields Inst Commun, vol. 38. Providence, RI: Amer Math Soc, 2003, 223–231

    Google Scholar 

  35. Sprugnoli R. Sums of reciprocals of the central binomial coefficients. Integers, 2006, 6: #A27, 18pp (electronic)

    MathSciNet  Google Scholar 

  36. Stanley R P. Enumerative Combinatorics. vol. 1. Cambridge: Cambridge Univ Press, 1999

    Book  MATH  Google Scholar 

  37. Staver T B. Om summasjon av potenser av binomialkoeffisienten. Norsk Mat Tids skrift, 1947, 29: 97–103

    MATH  MathSciNet  Google Scholar 

  38. Stienstra J, Beukers F. On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math Ann, 1985, 271: 269–304

    Article  MATH  MathSciNet  Google Scholar 

  39. Sun Z H. Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl Math, 2000, 105: 193–223

    Article  MATH  MathSciNet  Google Scholar 

  40. Sun Z H. Congruences involving Bernoulli and Euler numbers. J Number Theory, 2008, 128: 280–312

    Article  MATH  MathSciNet  Google Scholar 

  41. Sun Z W. On the sum \(\sum\nolimits_{k \equiv r(\bmod m)} {\left( {_k^n } \right)}\) and related congruences. Israel J Math, 2002, 128: 135–156

    Article  MATH  MathSciNet  Google Scholar 

  42. Sun Z W. Sequences A176285 and A176477 at OEIS. April, 2010. http://oeis.org

  43. Sun Z W. Binomial coefficients, Catalan numbers and Lucas quotients. Sci China Math, 2010, 53: 2473–2488

    Article  MATH  MathSciNet  Google Scholar 

  44. Sun Z W. On congruences related to central binomial coefficients. J Number Theory, 2011, 131: 2219–2238

    Article  MATH  Google Scholar 

  45. Sun Z W. Conjectures and results on x 2 mod p 2 with 4p = x 2 + dy 2. Preprint, arXiv:1103.4325. http://arxiv.org/abs/1103.4325

  46. Sun Z W, Davis D M. Combinatorial congruences modulo prime powers. Trans Amer Math Soc, 2007, 359: 5525–5553

    Article  MATH  MathSciNet  Google Scholar 

  47. Sun Z W, Tauraso R. New congruences for central binomial coefficients. Adv Appl Math, 2010, 45: 125–148

    Article  MATH  MathSciNet  Google Scholar 

  48. Sun Z W, Tauraso R. On some new congruences for binomial coefficients. Int J Number Theory, 2011, 7: 645–662

    Article  MATH  MathSciNet  Google Scholar 

  49. Tauraso R. An elementary proof of a Rodriguez-Villegas supercongruence. preprint, arXiv:0911.4261. http://arxiv.org/abs/0911.4261

  50. Tauraso R. Congruences involving alternating multiple harmonic sum. Electron J Combin, 2010, 17: #R16, 11pp (electronic)

  51. Tauraso R. More congruences for central binomial coefficients. J Number Theory, 2010, 130: 2639–2649

    Article  MATH  MathSciNet  Google Scholar 

  52. van Hamme L. Some conjectures concerning partial sums of generalized hypergeometric series. In: p-adic Functional Analysis, Lecture Notes in Pure and Appl Math, vol. 192. Nijmegen: Dekker, 1997, 223–236

    Google Scholar 

  53. Zeilberger D. Closed form (pun intended!). Contemp Math, 1993, 143: 579–607

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ZW. Super congruences and Euler numbers. Sci. China Math. 54, 2509–2535 (2011). https://doi.org/10.1007/s11425-011-4302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4302-x

Keywords

MSC(2000)

Navigation