Skip to main content
Log in

Moving finite element methods for time fractional partial differential equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 − α for time and r for space are proved when the method is used for the linear time FPDEs with α-th order time derivatives. Numerical examples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 2002

    Book  MATH  Google Scholar 

  2. Chen C, Liu F, Turner I, et al. A fourier method for the fractional diffusion equation describing sub-diffusion. J Comput Phys, 2007, 227: 886–897

    Article  MathSciNet  MATH  Google Scholar 

  3. Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam, 2002, 29: 3–22

    Article  MathSciNet  MATH  Google Scholar 

  4. Diethelm K, Ford N J, Freed A D. Detailed error analysis for a fractional Adams method. Numer Algorithm, 2004, 36: 31–52

    Article  MathSciNet  MATH  Google Scholar 

  5. Gorenflo R, Mainardi F. Some recent advances in theory and simulation of fractional diffusion processes. J Comput Appl Math, 2009, 229: 400–415

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang W, Ren Y, Russell R D. Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle. SIAM J Numer Anal, 1994, 31: 709–730

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang W, Russell R D. Adaptive Moving Mesh Methods. New York: Springer-Verlag, 2011

    Book  MATH  Google Scholar 

  8. Huang W Z, Sun W W. Variational mesh adaptation II: error estimates and monitor functions. J Comput Phys, 2003, 184: 619–648

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang Y J, Ma J T. High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math, 2011, 235: 3285–3290

    Article  MathSciNet  MATH  Google Scholar 

  10. Kirane M, Laskri Y, Tatar N E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J Math Anal Appl, 2005, 312: 488–501

    Article  MathSciNet  MATH  Google Scholar 

  11. Li C, Deng W. Remarks on fractional derivatives. Appl Math Comput, 2007 187: 777–784

    Article  MathSciNet  MATH  Google Scholar 

  12. Li X J, Xu C J. A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009 47: 2108–2131

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin Y M, Xu C J. Finite difference/spectral spproximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225: 1533–1552

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu Y X, Shu C W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Sci China Math, 2010, 12: 3255–3278

    Article  MathSciNet  Google Scholar 

  15. Lubich C. Discretized fractional calculus. SIAM J Math Anal, 1986, 17: 704–719

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma J T, Jiang Y J. Moving collocation methods for time fractional differential equations and simulation of blowup. Sci China Math, 2011, 54: 611–622

    Article  MathSciNet  MATH  Google Scholar 

  17. McLean W, Mustapha K. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer Algorithm, 2009, 5: 69–88

    Article  MathSciNet  Google Scholar 

  18. Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep, 2000, 339: 1–77

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustapha K, McLean M. Piecewise-linear, discontinous Galerkin method for a fractional diffusion equation. Numer Algorithm, 2011, 56: 159–184

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang J M, Chen Y P. A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problems. Sci China Math, 2010, 10: 2679–2696

    Article  Google Scholar 

  21. Zhuang P, Liu F, Anh V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J Numer Anal, 2008, 46: 1079–1095

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhuang P, Liu F, Anh V, et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J Numer Math, 2009, 74: 645–667

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingJun Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Ma, J. Moving finite element methods for time fractional partial differential equations. Sci. China Math. 56, 1287–1300 (2013). https://doi.org/10.1007/s11425-013-4584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4584-2

Keywords

MSC(2010)

Navigation