Skip to main content
Log in

Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology. The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta (TVDRK3) time discretization and upwinding numerical fluxes. By using the energy method, under a standard Courant-Friedrichs-Lewy (CFL) condition, we obtain L 2 stability for general solutions and a priori error estimates when the solutions are smooth enough. The theoretical results are proved for piecewise polynomials with any degree k ⩾ 1. Finally, since the solutions to this system are non-negative, we discuss a positivity-preserving limiter to preserve positivity without compromising accuracy. Numerical results are provided to demonstrate these RKDG methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer, 2008

    Book  MATH  Google Scholar 

  2. Cockburn B, Hou S, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math Comp, 1990, 54: 545–581

    MATH  MathSciNet  Google Scholar 

  3. Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J Comput Phys, 1989, 84: 90–113

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math Comp, 1989, 52: 411–435

    MATH  MathSciNet  Google Scholar 

  5. Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J Comput Phys, 1998, 141: 199–224

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput, 2001, 16: 173–261

    Article  MATH  MathSciNet  Google Scholar 

  7. Eftimie R, de Vries G, Lewis M A. Complex spatial group patterns result from different animal communication mechanisms. Proc Nat Acad Sci USA, 2007, 104: 6974–6979

    Article  MATH  Google Scholar 

  8. Eftimie R, de Vries G, Lewis M A, et al. Modeling group formation and activity patterns in self-organizing collectives of individual. Bull Math Biol, 2007, 69: 1537–1565

    Article  MATH  MathSciNet  Google Scholar 

  9. Erban R, Othmer H G. From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math, 2004, 65: 361–391

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldstein S. On diffusion by the discontinuous movements and the telegraph equation. Quart J Mech Appl Math, 1951, 4: 129–156

    Article  MATH  MathSciNet  Google Scholar 

  11. Hadeler K P. Reaction transport equations in biological modeling. In: Mathematics Inspired by Biology. Lecture Notes in Mathematics, vol. 1714. Berlin: Springer, 1999, 95–150

    Chapter  Google Scholar 

  12. Hasimoto H. Exact solution of a certain semi-linear system of partial differential equations related to a migrating predation problem. Proc Japan Acad Ser A Math Sci, 1974, 50: 623–627

    MATH  MathSciNet  Google Scholar 

  13. Hillen T. Existence theory for correlated random walks on bounded domains. Can Appl Math Q, 2010, 18: 1–40

    MATH  MathSciNet  Google Scholar 

  14. Kac M. A stochastic model related to the telegrapher’s equation. Rocky Mountain J Math, 1974, 4: 497–509

    Article  MATH  MathSciNet  Google Scholar 

  15. Lutscher F. Modeling alignment and movement of animals and cells. J Math Biol, 2002, 45: 234–260

    Article  MATH  MathSciNet  Google Scholar 

  16. Lutscher F, Stevens A. Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World Appl, 2000, 1: 409–433

    Article  MathSciNet  Google Scholar 

  17. Lutscher F, Stevens A. Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci, 2002, 12: 619–640

    Article  MATH  MathSciNet  Google Scholar 

  18. Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation. Los Alamos, NM: Los Alamos Scientific Laboratory. Report LA-UR-73-479, 1973

    Google Scholar 

  19. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys, 1988, 77: 439–471

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang Q, Shu C W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J Numer Anal, 2004, 42: 641–666

    Article  MathSciNet  Google Scholar 

  21. Zhang Q, Shu C W. Stability analysis and a priori error estimate to the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J Numer Anal, 2010, 48: 1038–1063

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang X, Shu C W. On maximum-principle-satisfying high order schemes for scalar conservation laws. J Comput Phys, 2010, 229: 3091–3120

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang X, Shu C W. Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J Comput Phys, 2011, 230: 1238–1248

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Additional information

Dedicated to Professor Shi Zhong-Ci on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Shu, CW. & Zhang, M. Stability analysis and a priori error estimate of explicit Runge-Kutta discontinuous Galerkin methods for correlated random walk with density-dependent turning rates. Sci. China Math. 56, 2645–2676 (2013). https://doi.org/10.1007/s11425-013-4739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4739-1

Keywords

MSC(2010)

Navigation