Skip to main content
Log in

A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L (0, T;L 2) for concentration c, in L 2(0, T; L 2) for c x and L (0, T;L 2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally, we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbogast T, Wheeler M F, Yotov I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J Numer Anal, 1997, 34: 828–852

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal, 2002, 39: 1749–1779

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayuso B, Carrillo J A, Shu C W. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinet Relat Models, 2011, 4: 955–989

    Article  MathSciNet  MATH  Google Scholar 

  4. Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution to the compressible Navier-Stokes equations. J Comput Phys, 1997, 131: 267–279

    Article  MathSciNet  MATH  Google Scholar 

  5. Bear J. Dynamics of Fluids in Porous Media. New York: Dover Publications Inc, 1972

    MATH  Google Scholar 

  6. Castillo P, Cockburn B, Perugia I, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38: 676–706

    Article  MathSciNet  Google Scholar 

  7. Castillo P, Cockburn B, Schötzau D, et al. Optimal a priori error estimates for the hp-version of the LDG method for convection diffusion problems. Math Comp, 2002, 71: 455–478

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet P. The Finite Element Method for Elliptic Problem. Amsterdam: North Holland, 1975

    Google Scholar 

  9. Cockburn B, Hou S, Shu C W. The Runge C Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV: The multidimensional case. Math Comp, 1990, 54: 545–581

    MathSciNet  MATH  Google Scholar 

  10. Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, III: One-dimensional systems. J Comput Phys, 1989, 84: 90–113

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, II: General framework. Math Comp, 1989, 52: 411–435

    MathSciNet  MATH  Google Scholar 

  12. Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation laws, V: Multidimensional systems. J Comput Phys, 1998, 141: 199–224

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas J J, Ewing R E, Wheeler M F. The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Numer Anal, 1983, 17: 17–33

    MathSciNet  MATH  Google Scholar 

  15. Douglas J J, Ewing R E, Wheeler M F. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Numer Anal, 1983, 17: 249–265

    MathSciNet  MATH  Google Scholar 

  16. Douglas J J, Roberts J E. Numerical methods for a model for compressible miscible displacement in porous media. Math Comp, 1983, 41: 441–459

    Article  MathSciNet  MATH  Google Scholar 

  17. Douglas J J, Roberts J E. Global Estimates for Mixed Methods for Second Order Elliptic Equations. Math Comp, 1985, 44: 39–52

    Article  MathSciNet  MATH  Google Scholar 

  18. Dullien F A L. Porous Media Fluid Transport and Pore Structure. New York: Academic Press, 1979

    Google Scholar 

  19. Liu Y X, Shu C W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Sci China Math, 2010, 53: 3255–3278

    Article  MathSciNet  MATH  Google Scholar 

  20. Reed W H, Hill T R. Triangular Mesh Method for the Neutron Transport Equation. Technical report LA-UR-73-479. Los Alamos, NM: Los Alamos Scientific Laboratory, 1973

    Google Scholar 

  21. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys, 1988, 77: 439–471

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun S Y, Rivière B, Wheeler M F. A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In: Recent Progress in Computational and Applied PDEs, Kluwer Academic Publishers. Dordrecht-New York: Plenum Press, 2002, 323–351

    Chapter  Google Scholar 

  23. Sun S Y, Wheeler M F. Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl Numer Math, 2005, 52: 273–298

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan J, Shu C W. A local discontinuous Galerkin method for KdV type equations. SIAM J Numer Anal, 2002, 40: 769–791

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu Y, Shu C W. Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J Comput Phys, 2005, 205: 72–97

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu Y, Shu C W. Local discontinuous Galerkin methods for the Kuramoto C Sivashinsky equations and the Ito-type coupled KdV equations. Comput Method Appl Mech Eng, 2006, 195: 3430–3447

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu Y, Shu C W. Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J Numer Anal, 2012, 50: 79–104

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang Q, Gao F Z. A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J Sci Comput, 2012, 51: 107–134

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Zhang, Q. & Yang, Y. A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media. Sci. China Math. 57, 2301–2320 (2014). https://doi.org/10.1007/s11425-014-4879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4879-y

Keywords

MSC(2010)

Navigation