Skip to main content
Log in

A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed, where the stress is approximated by symmetric H(div)-P k polynomial tensors and the displacement is approximated by C −1-P k−1 polynomial vectors, for all k ⩽ 4. The main ingredients for the analysis are a new basis of the space of symmetric matrices, an intrinsic H(div) bubble function space on each element, and a new technique for establishing the discrete inf-sup condition. In particular, they enable us to prove that the divergence space of the H(div) bubble function space is identical to the orthogonal complement space of the rigid motion space with respect to the vector-valued P k−1 polynomial space on each tetrahedron. The optimal error estimate is proved, verified by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R A. Sobolev Spaces. New York: Academic Press, 1975

    MATH  Google Scholar 

  2. Adams S, Cockburn B. A mixed finite element method for elasticity in three dimensions. J Sci Comput, 2005, 25: 515–521

    Article  MATH  MathSciNet  Google Scholar 

  3. Amara M, Thomas J M. Equilibrium finite elements for the linear elastic problem. Numer Math, 1979, 33: 367–383

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold D N, Awanou G. Rectangular mixed finite elements for elasticity. Math Models Methods Appl Sci, 2005, 15: 1417–1429

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold D, Awanou G, Winther R. Finite elements for symmetric tensors in three dimensions. Math Comp, 2008, 77: 1229–1251

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold D N, Brezzi F, Douglas J Jr. PEERS: A new mixed finite element for plane elasticity. Jpn J Appl Math, 1984, 1: 347–367

    Article  MATH  MathSciNet  Google Scholar 

  7. Arnold D N, Douglas J Jr, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45: 1–22

    Article  MATH  MathSciNet  Google Scholar 

  8. Arnold D N, Falk R, Winther R. Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math Comp, 2007, 76: 1699–1723

    Article  MATH  MathSciNet  Google Scholar 

  9. Arnold D N, Winther R. Mixed finite element for elasticity. Numer Math, 2002, 92: 401–419

    Article  MATH  MathSciNet  Google Scholar 

  10. Arnold D N, Winther R. Nonconforming mixed elements for elasticity. Math Models Methods Appl Sci, 2003, 13: 295–307

    Article  MATH  MathSciNet  Google Scholar 

  11. Awanou G. Two remarks on rectangular mixed finite elements for elasticity. J Sci Comput, 2012, 50: 91–102

    Article  MATH  MathSciNet  Google Scholar 

  12. Boffi D, Brezzi F, Fortin M. Reduced symmetry elements in linear elasticity. Comm Pure Appl Anal, 2009, 8: 95–121

    MATH  MathSciNet  Google Scholar 

  13. Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev Francaise Automat Informat Recherche Operationnelle Ser Rouge, 1974, 8: 129–151

    MATH  MathSciNet  Google Scholar 

  14. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Berlin: Springer, 1991

    Book  MATH  Google Scholar 

  15. Carstensen C, Eigel M, Gedicke J. Computational competition of symmetric mixed FEM in linear elasticity. Comput Methods Appl Mech Engrg, 2011, 200: 2903–2915

    Article  MATH  MathSciNet  Google Scholar 

  16. Carstensen C, Günther D, Reininghaus J, et al. The Arnold-Winther mixed FEM in linear elasticity, I: Implementation and numerical verification. Comput Methods Appl Mech Engrg, 2008, 197: 3014–3023

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen S C, Wang Y N. Conforming rectangular mixed finite elements for elasticity, J Sci Comput, 2011, 47: 93–108

    Article  MathSciNet  Google Scholar 

  18. Cockburn B, Gopalakrishnan J, Guzmán J. A new elasticity element made for enforcing weak stress symmetry. Math Comp, 2010, 79: 1331–1349

    Article  MATH  MathSciNet  Google Scholar 

  19. Gopalakrishnan J, Guzmán J. Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J Numer Anal, 2011, 49: 1504–1520

    Article  MATH  MathSciNet  Google Scholar 

  20. Gopalakrishnan J, Guzmán J. A second elasticity element using the matrix bubble. IMA J Numer Anal, 2012, 32: 352–372

    Article  MATH  MathSciNet  Google Scholar 

  21. Guzmán J. A unified analysis of several mixed methods for elasticity with weak stress symmetry. J Sci Comput, 2010, 44: 156–169

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu J, Shi Z C. Lower order rectangular nonconforming mixed elements for plane elasticity. SIAM J Numer Anal, 2007, 46: 88–102

    Article  MathSciNet  Google Scholar 

  23. Hu J, Man H Y, Zhang S. The minimal mixed finite element method for the symmetric stress field on rectangular grids in any space dimension. ArXiv:1304.5428, 2013

    Google Scholar 

  24. Hu J, Man H Y, Zhang S. A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension. J Sci Comput, 2014, 58: 367–379

    Article  MATH  MathSciNet  Google Scholar 

  25. Johnson C, Mercier B. Some equilibrium finite element methods for two-dimensional elasticity problems. Numer Math, 1978, 30: 103–116

    Article  MATH  MathSciNet  Google Scholar 

  26. Man H Y, Hu J, Shi Z C. Lower order rectangular nonconforming mixed finite element for the three-dimensional elasticity problem. Math Models Methods Appl Sci, 2009, 19: 51–65

    Article  MATH  MathSciNet  Google Scholar 

  27. Morley M. A family of mixed finite elements for linear elasticity. Numer Math, 1989, 55: 633–666

    Article  MATH  MathSciNet  Google Scholar 

  28. Scott L R, Zhang S. Finite-element interpolation of non-smooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  29. Stenberg R. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer Math, 1986, 48: 447–462

    Article  MATH  MathSciNet  Google Scholar 

  30. Stenberg R. Two low-order mixed methods for the elasticity problem. In: Whiteman J R, ed. The Mathematics of Finite Elements and Applications, VI. London: Academic Press, 1988, 271–280

    Google Scholar 

  31. Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53: 513–538

    Article  MATH  MathSciNet  Google Scholar 

  32. Yi S Y. Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions. CALCOLO, 2005, 42: 115–133

    Article  MATH  MathSciNet  Google Scholar 

  33. Yi S Y. A New nonconforming mixed finite element method for linear elasticity. Math Models Methods Appl Sci, 2006, 16: 979–999

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhang, S. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58, 297–307 (2015). https://doi.org/10.1007/s11425-014-4953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4953-5

Keywords

MSC(2010)

Navigation