Skip to main content
Log in

AFM study on the adsorption and aggregation behavior of dissolved humic substances on mica

  • Published:
Science in China Series B Aims and scope Submit manuscript

Abstract

Humic substances constitute the major organic fractions of soils, sediments and natural waters, and play a dominant role in the binding, mobilization, transport and ultimate fate of organic contaminants in subsurface systems. In this paper, two humic acid samples, Guanting and Tianjin, with different origin and chemical compositions have been investigated with AFM imaging for their adsorption and aggregation behaviors on mica. While the Tianjin humic sample is found to form small spheres with 250 to 330 nm in diameter at lower concentrations, irregular loop-chain assemblies of hundreds of nanometer in diameter with the chain width of about 40 nm are dominant for the Guanting humic sample, which may attribute to the more polar aliphatic fractions in the chemical composition in the latter. The heterogeneous and polydisperse nature of humic substances with multiple structural features, such as sponge-like structures, perforated sheets, aggregate of spheres, branches and chain-like assemblies etc., is apparent at higher concentrations for both humic samples, showing morphologically new evidence for the dominant view of the humic dual-mode sorption model. With naphthalene introduced, the assemblies of Guanting humic substances clearly become more compact with significantly narrowed branches and less porous the perforated sheet-like structures. It is indicative of that smaller nanometer scale rings present along the perforated assemblies could potentially represent hydrophobic domains, which may facilitate the adsorption and aggregation of naphthalene onto the natural particle surfaces and therefore lead to an important role of dissolved humic substances in the sorption of environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayes M H B, Clapp C E. Humic substances: Considerations of compositions, aspects of structure, and environmental influences. Soil Science, 2001, 166(11): 723–737

    Article  CAS  Google Scholar 

  2. MacCarthy P. The principles of humic substances. Soil Science, 2001, 166(11): 738–751

    Article  CAS  Google Scholar 

  3. Swift R S. Macromolecular properties of soil humic substances: Fact, fiction, and opinion. Soil Science, 1999, 164(11): 790–802

    Article  CAS  Google Scholar 

  4. Wershaw R L. Molecular aggregation of humic substances. Soil Science, 1999, 164(11): 803–813

    Article  CAS  Google Scholar 

  5. Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions. Soil Science, 1999, 164(11): 814–824

    Article  CAS  Google Scholar 

  6. Tipping E, Higgins D C. The effect of adsorbed humic substances on the colloid stability of haematite particles. Colloid Surf, 1982, 5(2): 85–92

    Article  CAS  Google Scholar 

  7. Wilkinson K J, Nègre J C, Buffle J. Coagulation of colloidal material in surface waters: The role of natural organic matter. J Contam Hydrol, 1997, 26(1–4): 229–243

    Article  CAS  Google Scholar 

  8. Garbarini D R, Lion L W. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol, 1986, 20(12): 1263–1269

    Article  CAS  Google Scholar 

  9. Gauthler T D, Seitz W R, Grant C L. Effects of structural and compositional variations of dissolved humic materials on pyrene KOC values. Environ Sci Technol, 1987, 21(3): 243–248

    Article  Google Scholar 

  10. Chiou C T, Malcolm R L, Brinton T I, et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol, 1986, 20(5): 502–508

    Article  CAS  Google Scholar 

  11. Chiou C T, Kile D E, Brinton T I, et al. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environ Sci Technol, 1987, 21(12): 1231–1234

    Article  CAS  Google Scholar 

  12. Rutherford D W, Chiou C T, Kile D E. Influence of soil organic matter composition on partition of organic compounds. Environ Sci Technol, 1992, 26(2): 336–340

    Article  CAS  Google Scholar 

  13. Grathwohl P. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on KOC correlations. Environ Sci Technol, 1990, 24(11): 1687–1693

    Article  CAS  Google Scholar 

  14. Murphy E M, Zachara J M, Smith S C, et al. Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ Sci Technol, 1994, 28(7): 1291–1299

    CAS  Google Scholar 

  15. Huang W L, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci Technol, 1997, 31(9): 2562–2569

    Article  CAS  Google Scholar 

  16. Engebretson R R, von Wandruszka R. Kinetic aspects of cationenhanced aggregation in aqueous humic acids. Environ Sci Technol, 1998, 32(4): 488–493

    Article  CAS  Google Scholar 

  17. Ghosh K, Schnitzer M. Macromolecular structures of humic substances. Soil Science, 1980, 129(5): 266–276

    CAS  Google Scholar 

  18. Camerson R S, Thomton B K, Swift R S, et al. Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts. Journal of Soil Science, 1972, 23: 394–408

    Google Scholar 

  19. Cornel P K, Summers R S, Roberts P V. Diffusion of humic acid in dilute aqueous solution. J Colloid Interface Sci, 1986, 110(1): 149–164

    Article  CAS  Google Scholar 

  20. Engebretson R R, von Wandruszka R. Microorganization in dissolved humic acids. Environ Sci Technol, 1994, 28(11): 1934–1941

    Article  CAS  Google Scholar 

  21. Lobartini J C, Tan K H. Differences in humic acid characteristics as determined by carbon-13 nuclear magnetic resonance, scanning electron microscopy, and infrared analysis. Soil Sci Soc Am J, 1988, 52(1): 125–130

    Article  CAS  Google Scholar 

  22. Hatcher P G, Dria K J, Kim Sunghwan, et al. Modern analytical studies of humic substances. Soil Sci, 2001, 166(11): 770–794

    Article  CAS  Google Scholar 

  23. Zhou Y M, Liu R X, Tang H X. Kinetics study of aqueous sorption of phenanthrene to humic acids and sediments. J Environ Sci, 2004, 16(3): 408–413

    CAS  Google Scholar 

  24. Chen Y, Schnitzer M. Scanning electron microscopy of a humic acid and of a fulvic acid and its metal and clay complexes. Soil Sci Soc Am J, 1976, 40(5): 682–686

    Article  CAS  Google Scholar 

  25. Stevenson I L, Schnitzer M. Transmission electron microscopy of extracted fulvic and humic acids. Soil Science, 1982, 133(3): 179–185

    CAS  Google Scholar 

  26. Paredes J I, Martínez-Alonso A, Tascón J M D. Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials. Microporous Mesoporous Mat, 2003, 65(2–3): 93–126

    Article  CAS  Google Scholar 

  27. Heil D, Sposito G. Organic matter role in illitic soil colloids flocculation (III): Scanning force microscopy. Soil Sci Soc Am J, 1995, 59(1): 266–269

    Article  CAS  Google Scholar 

  28. Gerin P A, Dufrêne Y F. Native surface structure of natural soil particles determined by combining atomic force microscopy and X-ray photoelectron spectroscopy. Colloid Surf B-Biointerfaces, 2003, 28(4): 295–305

    Article  CAS  Google Scholar 

  29. Namjesnik-Dejanovic K, Maurice P A. Atomic force microscopy of soil and stream fulvic acids. Colloid Surf A-Physicochem Eng Asp, 1997, 120(1–3): 77–86

    Article  CAS  Google Scholar 

  30. Maurice P A, Namjesnik-Dejanovic K. Aggregate structures of sorbed humic substances observed in aqueous solution. Environ Sci Technol, 1999, 33(9): 1538–1541

    Article  CAS  Google Scholar 

  31. Wilkinson K J, Balnois E, Leppard G G, et al. Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloid Surf A-Physicochem Eng Asp, 1999, 155(2–3): 287–310

    Article  CAS  Google Scholar 

  32. Balnois E, Wilkinson K J, Lead J R, et al. Atomic force microscopy of humic substances: Effects of pH and ionic strength. Environ Sci Technol, 1999, 33(21): 3911–3917

    Article  CAS  Google Scholar 

  33. Plaschke M, Römer J, Klenze R, et al. In situ AFM study of sorbed humic acid colloids at different pH. Colloid Surf A-Physicochem Eng Asp, 1999, 160(3): 269–279

    Article  CAS  Google Scholar 

  34. Plaschke M, Römer J, Klenze R. Influence of europium (III) on the adsorption of humic acid onto mica studied by AFM. Surf Interface Anal, 2000, 30(1): 297–300

    Article  CAS  Google Scholar 

  35. Plaschke M, Rothe J, Schäfer T, et al. Combined AFM and STXM in situ study of the influence of Eu(III) on the agglomeration of humic acid. Colloid Surf A-Physicochem Eng Asp, 2002, 197(1–3): 245–256

    Article  CAS  Google Scholar 

  36. Liu A G, Wu R C, Eschenazi E, et al. AFM on humic acid adsorption on mica. Colloid Surf A-Physicochem Eng Asp, 2000, 174(1–2): 245–252

    Article  CAS  Google Scholar 

  37. Liu Y, Wang Y X, Mo H J, et al. Effect of organic substrate on the formation of extracellular polymeric substrates in activated sludge. Environmental Chemistry (in Chinese), 2004, 23(3): 252–257

    CAS  Google Scholar 

  38. Schnitzer M. Organic matter extraction. In: Page A L, ed. Methods of Soil Analysis. Part 2. 2nd ed. Madison: American Society of Agronomy, 1982. 581

    Google Scholar 

  39. Zhou Y M. Sorption mechanisms of polycyclic aromatic hydrocarbons onto natural particles. Dissertation for the Doctoral Degree (in Chinese). Research Center for Eco-Environmental Sciences, 2003

  40. Hendershot W H, Duquette M. A simple barium chloride method for determining cationic exchange capacity and exchangeable cations. Soil Sci Soc Am J, 1986, 50: 605–608

    Article  Google Scholar 

  41. Conte P, Piccolo A. Conformational arrangement of dissolved humic substances: Influence of solution composition on association of humic molecules. Environ Sci Technol, 1999, 33(10): 1682–1690

    Article  CAS  Google Scholar 

  42. Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments. Water Res, 1979, 13(3): 241–248

    Article  CAS  Google Scholar 

  43. Chiou C T, Porter P E, Schmedding D W. Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol, 1983, 17(4): 227–231

    Article  CAS  Google Scholar 

  44. Kile D E, Chiou C T, Zhou H D, et al. Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environ Sci Technol, 1995, 29(5): 1401–1406

    Article  CAS  Google Scholar 

  45. Chiou C T, Mcgroddy S E, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol, 1998, 32(2): 264–269

    Article  CAS  Google Scholar 

  46. Chiou C T, Kile D E. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ Sci Technol, 1998, 32(3): 338–343

    Article  CAS  Google Scholar 

  47. Kile D E, Wershaw R T, Chiou C T. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds. Environ Sci Technol, 1999, 33(12): 2053–2056

    Article  CAS  Google Scholar 

  48. Chiou C T, Kile D E, Rutherford D W, et al. Sorption of selected organic compounds from water to a peat soil and its humic acid and humin fractions: Potential sources of the sorption nonlinearlity. Environ Sci Technol, 2000, 34(7): 1254–1258

    Article  CAS  Google Scholar 

  49. Zhu L Z, Chen B L, Tao S, et al. Interaction of organic contaminants with mineral-adsorbed surfactants. Environ Sci Technol, 2003, 37(17): 4001–4006

    Article  CAS  Google Scholar 

  50. Murphy E M, Zachara J M, Smith S C. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol, 1990, 24(10): 1507–1516

    Article  CAS  Google Scholar 

  51. McGinley P M, Katz L E, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments. 2. Multicomponent systems and competitive effects. Environ Sci Technol, 1993, 27(8): 1524–1531

    Article  CAS  Google Scholar 

  52. Haggerty R, Gorelick S M. Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour Res, 1995, 31(10): 2383–2400

    Article  Google Scholar 

  53. Xia G S, Ball W P. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent. Environ Sci Technol, 1999, 33(2): 262–269

    Article  CAS  Google Scholar 

  54. Xia G S, Ball W P. Polanyi-based models for the competitive sorption of low-polarity organic contaminants on a natural sorbent. Environ Sci Technol, 2000, 34(7): 1246–1253

    Article  CAS  Google Scholar 

  55. Xia G S, Pignatello J J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soils. Environ Sci Technol, 2001, 35(1): 84–94

    Article  CAS  Google Scholar 

  56. Weber W J Jr, Huang W L. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ Sci Technol, 1996, 30(3): 881–888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Hongxiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Zhou, Y., Lü, C. et al. AFM study on the adsorption and aggregation behavior of dissolved humic substances on mica. SCI CHINA SER B 49, 256–266 (2006). https://doi.org/10.1007/s11426-006-0256-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-0256-1

Keywords

Navigation