Skip to main content
Log in

Preparation of polystyrene/silica nanocomposites by radical copolymerization of styrene with silica macromonomer

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A two-stage process has been developed to generate the silica-based macromonomer through surface-modification of silica with polymerizable vinyl groups. The silica surfaces were treated with excess 2,4-toluene diisocynate (TDI), after which the residual isocyanate groups were converted into polymerizable vinyl groups by reaction with hydroxypropylacrylate (HPA). Thus, polystyrene/silica nanocomposites were prepared by conventional radical copolymerization of styrene with silica macromonomer. The main effecting factors, such as ratios of styrene to the macromonomer, together with polymerization time on the copolymerization were studied in detail. FTIR, DSC and TGA were utilized to characterize the nanocomposites. Experimental results revealed that the silica nanoparticles act as cross-linking points in the polystytene/silica nanocomposites, and the glass transition temperatures of the nanocomposites are higher than that of the corresponding pure polystyrene. The glass transition temperatures of nanocomposites increased with the increasing of silica contents, which were further ascertained by DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang B Z, Geng Y, Lam J W Y, Li B, Jing X, Wang X, Wang F, Pakhomov A B, Zhang X X. Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite milms. Chem Mater, 1999, 11(6): 1581–1589

    Article  CAS  Google Scholar 

  2. Jing Xinli, Zheng Maosheng, Jin Zhihao, Xu Xiaolin. Study on praperation and proterpies of PMMA-SiO2 in-situ composites. Polymer Materials Science and Engineering (in Chinese), 1998, 14(4):62–64

    CAS  Google Scholar 

  3. Collins D E, Slamovich E B. Preparation of a homogeneously dispersed BaTiO3/polymer nanocomposite thin film. Chem Mater, 1999, 11(9): 2319–2321

    Article  CAS  Google Scholar 

  4. Sanchez C, Soler-Illia G J A A, Ribot F, Lalot T, Mayer C R, Cabuil V. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem Mater, 2001, 13(10): 3061–3083

    Article  CAS  Google Scholar 

  5. Schottner G. Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem Mater, 2001, 13(10): 3422–3435

    Article  CAS  Google Scholar 

  6. Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chem Mater, 2001, 13(10): 3436–3448

    Article  CAS  Google Scholar 

  7. Francoise S, Thanh M L, Jean P P, Christian M. Organic-inorganic hybrid materials. 2. Compared structures of polydimethylsiloxane and hydrogenated polybutadiene based creamers. Macromolecules, 1992, 25(21): 5742–5751

    Article  Google Scholar 

  8. Jeng R J, Chen Y M, Chen J I, Kumar J, Tripathy S K. Phenoxysilicon polymer with stable second-order optical nonlinearity. Macromolecules, 1993, 26(10): 2530–2534

    Article  CAS  Google Scholar 

  9. Landry C J T, Coltrain B K, Landry M R, Fitzgerald J J, Long V K. Poly(vinyl acetate)/silica-filled materials: Material properties of in situ vs fumed silica particles. Macromolecules, 1993, 26(14): 3702–3712

    Article  CAS  Google Scholar 

  10. Wu S G, Ellerby L M, Cohan J S, Dunn B, El S M A, Valentine J S, Zink J I. Bacteriorhodopsin encapsulated in transparent sol-gel glass: a new biomaterial. Chem Mater, 1993, 5(1): 115–120

    Article  CAS  Google Scholar 

  11. Huang Zhihua, Qiu Kunyuan. Poly(methyl methacrylate)/TiO2 hybrid polymer materials prepared by the sol-gel process. Chem J Chin U (in Chinese), 1997, 18(5): 803–806

    CAS  Google Scholar 

  12. Zhang Yonghua, Gong Kecheng. Advances in organic-inorganic nanocomposites prepared via sol-gel process. Polym Mater Sci Eng (in Chinese), 1997, 13(4): 14–18

    Google Scholar 

  13. Cao Lixin, Yuan Xundao, Wan Haibao, Zeng Guangfu, Xi Shiquan. Preparation of inorganic-organic nanocomposite materials by sol-gel process. Chin J Appl Chem (in Chinese). 1998, 15(3): 1–5

    CAS  Google Scholar 

  14. Prucker O, Ruhe J. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules, 1998, 31(3): 592–601

    Article  CAS  Google Scholar 

  15. von Werne T, Patten T E. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J Am Chem Soc, 2001, 123(31): 7497–7505

    Article  Google Scholar 

  16. Michiel L C M O, Arjen S, Arend J S. Anionic grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides. Polymer, 1992, 33(20): 4394–4400

    Article  Google Scholar 

  17. Espiard P, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica. 2. Grafting process onto silica. Polymer, 1995, 36(23): 4391–4395

    Article  CAS  Google Scholar 

  18. Jethmalani J M, Ford W T. Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films. Chem Mater, 1996, 8(8): 2138–2146

    Article  CAS  Google Scholar 

  19. Li Shaoxiong, Liu Yijun. Polyurethane Adhesive (in Chinese). 1st ed. Beijing: Chemical Industry Press, 1998. 13–15

    Google Scholar 

  20. Boven G, Michiel L C M O, Challa G, Arend J S. Grafting kinetics of poly(methyl methacrylate) on microparticulate silica. Polymer, 1990, 31(12): 2377–2383

    Article  CAS  Google Scholar 

  21. Li H R, Lin J, Zhang H J, Fu L S, Meng Q G, Wang S B. Preparation and luminescence properties of hybrid materials containing europium (III) complexes covalently bonded to a silica matrix. Chem Mater, 2002, 14(9): 3651–3655

    Article  CAS  Google Scholar 

  22. Ke Yikan, Dong Huiru. Analysis Chemistry Handbook-spectra Analysis (in Chinese). 2nd ed. Beijing: Chemistry Industry Press, 1998. 957

    Google Scholar 

  23. Gao Qibiao. In-situ Polymerization of Styrene/Nano-SiO2 (in Chinese). Dissertation for Master Degree. Hangzhou: Zhejiang University, 2002. 18–64

    Google Scholar 

  24. Bartholome C, Beyou E, Bourgeat L E, Chaumont P, Zydowicz N. Nitroxide-mediated polymerizations from silica nanoparticle surfaces: “Graft from” polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator. Macromolecules, 2003, 36(21): 7946–7952

    Article  CAS  Google Scholar 

  25. Shang X Y, Zhu Z K, Yin J, Ma X D. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater, 2002, 14(1): 71–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou BaoLi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, B., Li, D. Preparation of polystyrene/silica nanocomposites by radical copolymerization of styrene with silica macromonomer. SCI CHINA SER B 50, 385–391 (2007). https://doi.org/10.1007/s11426-007-0069-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0069-x

Key words

Navigation