Skip to main content
Log in

Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Titanium dioxide coated on activated carbon (AC) with Fe ions doping (Fe-TiO2/AC) composite was prepared by an improved sol-gel method. The photocatalytic activities were tested by photocatalytic degradation of reactive brilliant red K2G in solution. The results show that in comparison with the agglomeration of pure TiO2, the TiO2 nanoparticles are well dispersed in the AC matrix, of which sizes are decreased with Fe ions doping. Additionally, the iron species on TiO2 of composite are Fe2O3 and FeO, which do not affect the crystalline structures of TiO2 nanoparticles. The AC matrix and iron doping content influence the fluorescence intensity of composite due to their effects on recombination probability of hole-electron pairs. Compared with TiO2, 0.3% Fe-TiO2, TiO2/AC, 0.5% Fe-TiO2/AC and 0.1% Fe-TiO2/AC, the 0.3% Fe-TiO2/AC shows the highest photoactivity with the complete mineralization of K2G for finite time due to the optimum Fe ions content and AC matrix. Furthermore, the kinetic constant (k = 0.0229 min−1) of 0.3% Fe-TiO2/AC composite is more than the sum of both TiO2/AC (0.0154 min−1) and 0.3% Fe-TiO2 (0.0057 min−1) because coexistence of the AC and Fe ions has an enlarging effect on improving the photoactivity of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeda N, Iwata N, Torimoto T, Yoneyama H. Influence of carbon black as an adsorbant used in photocatalyst films on photodegradation behaviors of propyzamide. J Catal, 1998, 177: 240–246

    Article  CAS  Google Scholar 

  2. Fukahori S, Ichiura H, Kitaoka T, Tanaka H. Capturing of bisphenol a photodecomposition intermediates by composite TiO2-zeolite sheets. Appl Catal B: Environ, 2003, 46: 453–462

    Article  CAS  Google Scholar 

  3. Alhakimi G, Studnicki L H, Al-Ghazali M. Photocatalytic destruction of potassium hydrogen phthalate using TiO2 and sunlight: Application for the treatment of industrial wastewater. J Photochem Photobiol A: Chem, 2003, 154(2–3): 219–228

    Article  CAS  Google Scholar 

  4. Shiraishi F, Yamaguchi S, Ohbuchi Y. A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus. Chem Eng Sci, 2003, 58: 929–934

    Article  CAS  Google Scholar 

  5. Chun H, Yizhong W, Hongxiao T. Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere, 2000, 41: 1205–1210

    Article  CAS  Google Scholar 

  6. Ding Z, Zhu H Y, Lu G Q, Greenfield P F. Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Interface Sci, 1999, 209: 193–199

    Article  CAS  Google Scholar 

  7. Takeda N, Torimoto T, Sampath S, Kuwabata S, Yoneyama H. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem, 1995, 99: 9986–9991

    Article  CAS  Google Scholar 

  8. Cordero T, Chovelon J M, Duchamp C, Ferronato C, Matos J. Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons. Appl Catal B: Environ, 2007, 73(3): 227–235

    Article  CAS  Google Scholar 

  9. Mozia S, Toyoda M, nagaki I M, Tryba B, Morawski A W. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. J Hazardous Mater, 2007, 140(1–2): 369–375

    Article  CAS  Google Scholar 

  10. Fukahori S, Ichiura H, Kitaoka T, Tanaka H. Photocatalytic decomposition of bisphenol a in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ Sci Technol, 2003, 37: 1048–1051

    Article  CAS  Google Scholar 

  11. Hou H, Miyafuji H, Saka S. Photocatalytic activities and mechanism of the supercritically treated TiO2-activated carbon composites on decomposition of acetaldehyde. J Mater Sci, 2006, 41(24): 8295–8300

    Article  CAS  Google Scholar 

  12. Wang C C, Lee C K, Lyu M D, Juang L C. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes Pigm, 2008, 76(3): 817–824

    Article  CAS  Google Scholar 

  13. Duminica F D, Maury F, Hausbrand R. Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications. Surf Coat Tech, 2007, 201(22–23): 9304–9308

    Article  CAS  Google Scholar 

  14. Cordero T, Duchamp C, Chovelon J M, Ferronato C, Matos J. Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation. J Photochem Photobiol A: Chem, 2007, 191(2–3): 122–131

    Article  CAS  Google Scholar 

  15. Subramani A K, Byrappa K, Ananda S, Lokanatha K M, Ranganathaiah C, Yoshimura M. Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon. Bull Mater Sci, 2007, 30(1): 37–41

    Article  CAS  Google Scholar 

  16. Hou H, Miyafuji H, Kawamoto H, Saka S. Supercritically treated TiO2-activated carbon composites for cleaning ammonia. J Wood Sci, 2006, 52(6): 533–538

    Article  CAS  Google Scholar 

  17. Woo S H, Kim W W, Kim S J, Rhee C K. Photocatalytic behaviors of transition metal ion doped TiO2 powder synthesized by mechanical alloying. Mater Sci Eng A, 2007, 448: 151–1154

    Google Scholar 

  18. Litter M I, Navío J A. Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol A: Chem, 1996, 98: 171–181

    Article  CAS  Google Scholar 

  19. Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carried recombination dynamics. J Phys Chem, 1994, 98(5): 13669–13679

    Article  Google Scholar 

  20. Yang P, Lu C, Hua N P, Du Y K. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mate Let, 2002, 57: 794–801

    Article  CAS  Google Scholar 

  21. Sakthivel S, Neppolian B, Shankar M V, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of Azo Dye: Comparison of photacatalytic efficiency of ZnO and TiO2. Energy Mater Sol Cell, 2003, (77): 65–71

  22. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A: Chem, 2002, 148: 257–261

    Article  CAS  Google Scholar 

  23. Yu J G, Zhao X J. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films. Mater Res Bull, 2000, 36: 97–107

    Article  Google Scholar 

  24. Liu B J, Torimoto T, Yoneyama H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J Photochem Photobiol A: Chem, 1998, 113: 93–97

    Article  CAS  Google Scholar 

  25. Inoue H, Moriwaki H, Maeda K, Yoneyama H. Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. J Photochem Photobiol A: Chem, 1995, 86: 191–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouJi Li.

Additional information

Supported by the Education Department Foundation of Hunan Province (Grant No. 08B063) and Science and Natural Science Foundation of Hunan Province (Grant No. 09JJ6101)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, J., Ma, M. et al. Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G. Sci. China Ser. B-Chem. 52, 1113–1119 (2009). https://doi.org/10.1007/s11426-009-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0169-x

Keywords

Navigation