Skip to main content
Log in

Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2′-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2′-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describe a convenient synthesis of the 2′-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2′-Se-A derivatization. The 3D structure of 2′-Se-A-DNA decamer [5′-GTACGCGT(2′-Se-A)C-3′]2 was determined at 1.75 Å resolution, the 2′-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2′-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2′-Se-U and 2′-Se-T, this novel observation on the 2′-Se-A functionality suggests that the 2′-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu M, Steitz TA. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-A resolution. Proc Natl Acad Sci USA, 2000, 97: 2023–2028

    Article  CAS  Google Scholar 

  2. Jacobs SA, Podell E R, Cech T R. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol, 2006, 13: 218–225

    Article  CAS  Google Scholar 

  3. Egli M, Pallan PS. Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides. Annu Rev Biophys Biomol Struct, 2007, 36: 281–305

    Article  CAS  Google Scholar 

  4. Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature, 2009, 457: 405–412

    Article  CAS  Google Scholar 

  5. Parkinson GN, Lee MP, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417: 876–880

    Article  CAS  Google Scholar 

  6. Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430: 45–50

    Article  CAS  Google Scholar 

  7. Xiong Y, Sundaralingam M. Crystal structure of a DNA.RNA hybrid duplex with a polypurine RNA r(gaagaagag) and a complementary polypyrimidine DNA d(CTCTTCTTC). Nucleic Acids Res, 2000, 28: 2171–2176

    Article  CAS  Google Scholar 

  8. Garman E, Murray JW. Heavy-atom derivatization. Acta Crystallogr D Biol Crystallogr, 2003, 59: 1903–1913

    Article  Google Scholar 

  9. Ennifar E, Carpentier P, Ferrer JL, Walter P, Dumas P. X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr, 2002, 58: 1262–1268

    Article  CAS  Google Scholar 

  10. Shah K, Wu H, Rana TM. Synthesis of uridine phosphoramidite analogs: reagents for site-specific incorporation of photoreactive sites into RNA sequences. Bioconjug Chem, 1994, 5: 508–512

    Article  CAS  Google Scholar 

  11. Willis MC, Hicke BJ, Uhlenbeck OC, Cech TR, Koch TH. Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science, 1993, 262: 1255–1257

    Article  CAS  Google Scholar 

  12. Jiang J, Sheng J, Carrasco N, Huang Z. Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res, 2007, 35: 477–485

    Article  CAS  Google Scholar 

  13. Keel AY, Rambo RP, Batey RT, Kieft JS. A general strategy to solve the phase problem in RNA crystallography. Structure, 2007, 15: 761–772

    Article  CAS  Google Scholar 

  14. Sheng J, Huang Z. Selenium derivatization of nucleic acids for phase and structure determination in nucleic acid X-ray crystallography. Int J Mol Sci, 2008, 9: 258–271

    Article  Google Scholar 

  15. Caton-Williams J, Huang Z. Biochemistry of sele nium-derivatized naturally occurring and unnatural nucleic acids. Chem Biodivers, 2008, 5: 396–407

    Article  CAS  Google Scholar 

  16. Yang W, Hendrickson WA, Crouch RJ, Satow Y. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science, 1990, 249: 1398–1405

    Article  CAS  Google Scholar 

  17. Hendrickson WA, Horton JR, LeMaster DM. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J, 1990, 9: 1665–1672

    CAS  Google Scholar 

  18. Hendrickson WA. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 1991, 254: 51–58

    Article  CAS  Google Scholar 

  19. Hendrickson WA. Synchrotron crystallography. Trends Biochem Sci, 2000, 25: 637–643

    Article  CAS  Google Scholar 

  20. Carrasco N, Ginsburg D, Du Q, Huang Z. Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides Nucleotides Nucleic Acids, 2001, 20: 1723–1734

    Article  CAS  Google Scholar 

  21. Du Q, Carrasco N, Teplova M, Wilds CJ, Egli M, Huang Z. Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J Am Chem Soc, 2002, 124: 24–25

    Article  CAS  Google Scholar 

  22. Teplova M, Wilds CJ, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M. Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion. Biochimie, 2002, 84: 849–858

    Article  CAS  Google Scholar 

  23. Serganov A, Keiper S, Malinina L, Tereshko V, Skripkin E, Hobartner C, Polonskaia A, Phan AT, Wombacher R, Micura R, Dauter Z, Jaschke A, Patel DJ. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation. Nat Struct Mol Biol, 2005, 12: 218–224

    Article  CAS  Google Scholar 

  24. Egli M, Pallan PS, Pattanayek R, Wilds CJ, Lubini P, Minasov G, Dobler M, Leumann CJ, Eschenmoser A. Crystal structure of homo-DNA and nature’s choice of pentose over hexose in the genetic system. J Am Chem Soc, 2006, 128: 10847–10

    Article  CAS  Google Scholar 

  25. Moroder H, Kreutz C, Lang K, Serganov A, Micura R. Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J Am Chem Soc, 2006, 128: 9909–9918

    Article  CAS  Google Scholar 

  26. Sheng J, Jiang J, Salon J, Huang Z. Synthesis of a 2′-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org Lett, 2007, 9: 749–752

    Article  CAS  Google Scholar 

  27. Salon J, Sheng J, Jiang J, Chen G, Caton-Williams J, Huang Z. Oxygen replacement with selenium at the thymidine 4-position for the Se base pairing and crystal structure studies. J Am Chem Soc, 2007, 129: 4862–4863

    Article  CAS  Google Scholar 

  28. Watts JK, Johnston BD, Jayakanthan K, Wahba AS, Pinto BM, Damha MJ. Synthesis and biophysical characterization of oligonucleotides containing a 4′-selenonucleotide. J Am Chem Soc, 2008, 130: 8578–8579

    Article  CAS  Google Scholar 

  29. Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z. Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res, 2008, 36: 7009–7018

    Article  CAS  Google Scholar 

  30. Hassan AE, Sheng J, Jiang J, Zhang W, Huang Z. Synthesis and crystallographic analysis of 5-Se-thymidine DNAs. Org Lett, 2009, 11: 2503–2506

    Article  CAS  Google Scholar 

  31. Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z. Selenium deri vatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res, 2004, 32: 1638–1646

    Article  CAS  Google Scholar 

  32. Puffer B, Moroder H, Aigner M, Micura R. 2′-Methylseleno-modified oligoribonucleotides for X-ray crystallography synthesized by the ACE RNA solid-phase approach. Nucleic Acids Res, 2008, 36: 970–983

    Article  CAS  Google Scholar 

  33. Jeong LS, Tosh DK, Kim HO, Wang T, Hou X, Yun HS, Kwon Y, Lee SK, Choi J, Zhao LX. First synthesis of 4′-selenonucleosides showing unusual Southern conformation. Org Lett, 2008, 10: 209–212

    Article  CAS  Google Scholar 

  34. Wilds CJ, Pattanayek R, Pan C, Wawrzak Z, Egli M. Selenium-assisted nucleic acid crystallography: use of phosphoroselenoates for MAD phasing of a DNA structure. J Am Chem Soc, 2002, 124: 14910–14916

    Article  CAS  Google Scholar 

  35. Carrasco N, Huang Z. Enzymatic synthesis of phosphoroselenoate DNA using thymidine 5′-(alpha-P-seleno)triphosphate and DNA polymerase for X-ray crystallography via MAD. J Am Chem Soc, 2004, 126: 448–449

    Article  CAS  Google Scholar 

  36. Brandt G, Carrasco N, Huang Z. Efficient substrate cleavage catalyzed by hammerhead ribozymes derivatized with selenium for X-ray crystallography. Biochemistry, 2006, 45: 8972–8977

    Article  CAS  Google Scholar 

  37. Carrasco N, Caton-Williams J, Brandt G, Wang S, Huang Z. Efficient enzymatic synthesis of phosphoroselenoate RNA by using adenosine 5′-(alpha-P-seleno)triphosphate. Angew Chem Int Ed, 2006, 45: 94–97

    Article  CAS  Google Scholar 

  38. Caton-Williams J, Huang Z. Synthesis and DNA-polymerase incorporation of colored 4-selenothymidine triphosphate for polymerase recognition and DNA visualization. Angew Chem Int Ed, 2008, 47: 1723–1725

    Article  CAS  Google Scholar 

  39. Hobartner C, Rieder R, Kreutz C, Puffer B, Lang K, Polonskaia A, Serganov A, Micura R. Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J Am Chem Soc, 2005, 127: 12035–12045

    Article  CAS  Google Scholar 

  40. Kim T, Kwon TH, Jung H, Ku JK, Sundaralingam M, Ban C. Crystal Structures of the Two Isomorphous A-DNA Decamers d(GTACGCGTAC) and d(GGCCGCGGCC). Bull Korean Chem Soc, 2006, 27: 568–572

    Article  CAS  Google Scholar 

  41. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Meth Enzymol, 1997, 276: 307–326

    Article  CAS  Google Scholar 

  42. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 1998, 54: 905–921

    Article  CAS  Google Scholar 

  43. Parkinson G, Vojtechovsky J, Clowney L, Brunger AT, Berman HM. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr, 1996, 52: 57–64

    Article  CAS  Google Scholar 

  44. Brunger A T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, 1992, 355: 472–475

    Article  CAS  Google Scholar 

  45. Read R J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst, 1986, A42: 140–149

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, J., Salon, J., Gan, J. et al. Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Sci. China Chem. 53, 78–85 (2010). https://doi.org/10.1007/s11426-010-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0012-4

Keywords

Navigation