Skip to main content
Log in

Electrochemical reactions at the electrode/solution interface: Theory and applications to water electrolysis and oxygen reduction

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Theoretical simulations on complex electrochemical processes have been developed on the basis of the understanding in electrochemistry, which has benefited from quantum mechanics calculations. This article reviews the recent progress on the theory and applications in electrocatalysis. Two representative reactions, namely water electrolysis and oxygen reduction, are selected to illustrate how the theoretical methods are applied to electrocatalytic reactions. The microscopic nature of these electrochemical reactions under the applied potentials is described and the understanding of the reactions is summarized. The thermodynamics and kinetics of the electrochemical reactions affected by the interplay of the electrochemical potential, the bonding strength and the local surface structure are addressed at the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammer B, Norskov JK. Theoretical surface science and catalysis — Calculations and concepts. Adv Catal, 2000, 45: 71–129

    Article  CAS  Google Scholar 

  2. Liu ZP, Hu P. CO oxidation and NO reduction on metal surfaces: density functional theory investigations. Top Catal, 2004, 28: 71–78

    Article  Google Scholar 

  3. Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Norskov JK. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 2008, 320: 1320–1322

    Article  CAS  Google Scholar 

  4. Anderson AB, Neshev NM. Mechanism for the electro-oxidation of carbon monoxide on platinum, including electrode potential dependence-Theoretical determination. J Electrochem Soc, 2002, 149: E383–E388

    Article  CAS  Google Scholar 

  5. Schweiger H, Vayner E, Anderson AB. Why is there such a small overpotential for O-2 electroreduction by copper laccase? Electrochem Solid-State Lett, 2005, 8: A585–A587

    Article  CAS  Google Scholar 

  6. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  CAS  Google Scholar 

  7. Filhol JS, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew Chem Int Ed, 2006, 45: 402–406

    Article  CAS  Google Scholar 

  8. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetra-hexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732–735

    Article  CAS  Google Scholar 

  9. Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324: 1302–1305

    Article  CAS  Google Scholar 

  10. Imai H, Izumi K, Matsumoto M, Kubo Y, Kato K, Imai Y. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media. J Am Chem Soc, 2009, 131: 6295–6302

    Google Scholar 

  11. Di Blasi A, D’Urso C, Baglio V, Antonucci V, Arico AS, Ornelas R, Matteucci F, Orozco G, Beltran D, Meas Y, Arriaga LG. Preparation and evaluation of RuO2-IrO2, IrO2-Pt and IrO2-Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer. J Appl Electrochem, 2009, 39: 191–196

    Article  CAS  Google Scholar 

  12. Bard AJ, Faulkner LR. Electrochemical Methods Fundamentals and Applications. 2nd ed. New York: John Wiely & Sons Inc, 2001. 1–400

    Google Scholar 

  13. Darling GR, Holloway S. The dissociation of diatomic molecules at surfaces. Rep Prog Phys, 1995, 58: 1595–1672

    Article  CAS  Google Scholar 

  14. Hammer B, Norskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci, 1995, 343: 211–220

    Article  CAS  Google Scholar 

  15. Brivio GP, Trioni MI. The adiabatic molecule-metal surface interaction: Theoretical approaches. Rev Mod Phys, 1999, 71: 231–265

    Article  CAS  Google Scholar 

  16. Parr P, Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989. 3–281

    Google Scholar 

  17. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B, 1964, 136: B864–&

    Article  Google Scholar 

  18. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: 1133–&

    Article  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  20. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  CAS  Google Scholar 

  21. Ge QF, Kose R, King DA. Adsorption energetics and bonding from femtomole calorimetry and from first principles theory. Adv Catal, 2000, 45: 207–259

    Article  CAS  Google Scholar 

  22. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations-molecular-dynamics and conjugate gradients. Rev Mod Phys, 1992, 64: 1045–1097

    Article  CAS  Google Scholar 

  23. Ashcroft NW, Mermin ND. Solid State Physics. Philadelphia: Holt Saunders, 1976

    Google Scholar 

  24. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

    Article  Google Scholar 

  25. Johnson DD. Modified broyden method for accelerating convergence in self-consistent calculations. Phys Rev B, 1988, 38: 12807–12813

    Article  Google Scholar 

  26. Fletcher. Pratical Methods of Optimization. 2nd ed. Chichester: John Wiley, 1987

    Google Scholar 

  27. Hammer B, Jacobsen KW, Norskov JK. Dissociation path for H2 on Al(110). Phys Rev Lett, 1992, 69: 1971–1974

    Article  CAS  Google Scholar 

  28. Alavi A, Hu PJ, Deutsch T, Silvestrelli PL, Hutter J. CO oxidation on Pt(111): An ab initio density functional theory study. Phys Rev Lett, 1998, 80: 3650–3653

    Article  CAS  Google Scholar 

  29. Wang HF, Liu ZP. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J Am Chem Soc, 2008, 130: 10996–11004

    Article  CAS  Google Scholar 

  30. Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  31. Kaestner J, Sherwood P. Superlinearly converging dimer method for transition state search. J Chem Phys, 2008, 128: 014106

    Article  CAS  Google Scholar 

  32. Henkelman G, Jonsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys, 1999, 111: 7010–7022

    Article  CAS  Google Scholar 

  33. Yang KL, Yiacoumi S, Tsouris C. Monte Carlo simulations of electrical double-layer formation in nanopores. J Chem Phys, 2002, 117: 8499–8507

    Article  CAS  Google Scholar 

  34. Yang KL, Yiacoumi S, Tsouris C. Canonical Monte Carlo simulations of the fluctuating-charge molecular water between charged surfaces. J Chem Phy., 2002, 117: 337–345

    Article  CAS  Google Scholar 

  35. Vossen M, Forstmann F. The structure of water at a planar wall-an integral-equation approach with the central force model. J Chem Phys, 1994, 101: 2379–2390

    Article  CAS  Google Scholar 

  36. Kramer A, Vossen M, Forstmann F. The influence of image interactions on the structure of water and electrolytes in front of a metal surface. J Chem Phys, 1997, 106: 2792–2800

    Article  Google Scholar 

  37. Borukhov I, Andelman D, Orland H. Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Phys Rev Lett, 1997, 79: 435–438

    Article  CAS  Google Scholar 

  38. Abrashkin A, Andelman D, Orland H. Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces. Phys Rev Lett, 2007, 99: 077801

    Article  CAS  Google Scholar 

  39. Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys Rev E, 2007, 75: 021503

    Article  CAS  Google Scholar 

  40. Spohr E, Heinzinger K. Computer-simulations of water and aqueous-electrolyte solutions at interfaces. Electrochim Acta, 1988, 33: 1211–1222

    Article  CAS  Google Scholar 

  41. Halley JW, Mazzolo A, Zhou Y, Price D. First-principles simulations of the electrode vertical bar electrolyte interface. J Electroanal Chem, 1998, 450: 273–280

    Article  CAS  Google Scholar 

  42. Spohr E. Molecular dynamics simulation studies of the density profiles of water between (9-3) Lennard-Jones walls. J Chem Phys, 1997, 106: 388–391

    Article  CAS  Google Scholar 

  43. Koper MTM, van Santen RA. Electric field effects on CO and NO adsorption at the Pt(111) surface. J Electroanal Chem, 1999, 476: 64–70

    Article  CAS  Google Scholar 

  44. Olivera PP, Ferral A, Patrito EM. Theoretical investigation of hydrated hydronium ions on Ag(111). J Phys Chem B, 2001, 105: 7227–7238

    Article  CAS  Google Scholar 

  45. Patrito EM, Paredes-Olivera P. Adsorption of hydrated hydroxide and hydronium ions on Ag(111). A quantum mechanical investigation. Surf Sci, 2003, 527: 149–162

    Article  CAS  Google Scholar 

  46. Hyman MP, Medlin JW. Theoretical study of the adsorption and dissociation of oxygen on Pt(111) in the presence of homogeneous electric fields. J Phys Chem B, 2005, 109: 6304–6310

    Article  CAS  Google Scholar 

  47. Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J Electrochem Soc, 2004, 151: A2016–A2027

    Article  CAS  Google Scholar 

  48. Karlberg GS, Rossmeisl J, Norskov JK. Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phy. 2007, 9: 5158–5161

    Article  CAS  Google Scholar 

  49. Anderson AB. Derivation of extended huckel method with corrections-one electron molecular-orbital theory for energy-level and structure determinations. J Chem Phys, 1975, 62: 1187–1188

    Article  CAS  Google Scholar 

  50. Anderson AB. Electron-density distribution-functions and the ased-mo theory. Int. J Quantum Chem, 1994, 49: 581–589

    Article  CAS  Google Scholar 

  51. Anderson AB, Kang DB. Quantum chemical approach to redox reactions including potential dependence: Application to a model for hydrogen evolution from diamond. J Phys Chem A, 1998, 102: 5993–5996

    Article  CAS  Google Scholar 

  52. Anderson AB, Albu TV. Ab initio approach to calculating activation energies as functions of electrode potential-Trial application to four-electron reduction of oxygen. Electrochem Commun, 1999, 1: 203–206

    Article  CAS  Google Scholar 

  53. Anderson AB, Albu TV. Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J Am Chem Soc, 1999, 121: 11855–11863

    Article  CAS  Google Scholar 

  54. Anderson AB, Albu TV. Catalytic effect of platinum on oxygen reduction-An ab initio model including electrode potential dependence. J Electrochem Soc, 2000, 147: 4229–4238

    Article  CAS  Google Scholar 

  55. Albu TV, Anderson AB. Studies of model dependence in an ab initio approach to uncatalyzed oxygen reduction and the calculation of transfer coefficients. Electrochim Acta, 2001, 46: 3001–3013

    Article  CAS  Google Scholar 

  56. Anderson AB. O-2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths. Electrochim Acta, 2002, 47: 3759–3763

    Article  CAS  Google Scholar 

  57. Anderson AB, Neshev NM, Sidik RA, Shiller P. Mechanism for the electrooxidation of water to OH and O bonded to platinum: quantum chemical theory. Electrochim Acta, 2002, 47: 2999–3008

    Article  CAS  Google Scholar 

  58. Sidik RA, Anderson AB. Density functional theory study of O–2 electroreduction when bonded to a Pt dual site. J Electroanal Chem, 2002, 528: 69–76

    Article  CAS  Google Scholar 

  59. Cai Y, Anderson AB. The reversible hydrogen electrode: Potential-dependent activation energies over platinum from quantum theory. J Phys Chem B, 2004, 108: 9829–9833

    Article  CAS  Google Scholar 

  60. Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23–J26

    Article  CAS  Google Scholar 

  61. Hansen HA, Rossmeisl J, Norskov JK. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys, 2008, 10: 3722–3730

    Article  CAS  Google Scholar 

  62. Rossmeisl J, Logadottir A, Norskov JK. Electrolysis of water on (oxidized) metal surfaces. Chem Phys, 2005, 319: 178–184

    Article  CAS  Google Scholar 

  63. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A. Structure and bonding of water on Pt(111). Phys Rev Lett, 2002, 89: 276102

    Article  CAS  Google Scholar 

  64. Rossmeisl J, Norskov JK, Taylor CD, Janik MJ, Neurock M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J Phys Chem B, 2006, 110: 21833–21839

    Article  CAS  Google Scholar 

  65. Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM. Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys, 2001, 115: 1661–1669

    Article  CAS  Google Scholar 

  66. Lozovoi AY, Alavi A. Reconstruction of charged surfaces: General trends and a case study of Pt(110) and Au(110). Phys Rev B, 2003, 68: 245416

    Article  CAS  Google Scholar 

  67. Taylor CD, Neurock M. Theoretical insights into the structure and reactivity of the aqueous/metal interface. Curr Opin Solid State Mater Sci, 2005, 9: 49–65

    Article  CAS  Google Scholar 

  68. Taylor C, Kelly RG, Neurock M. First-principles calculations of the electrochemical reactions of water at an immersed Ni(111)/H2O interface. J Electrochem Soc, 2006, 153: E207–E214

    Article  CAS  Google Scholar 

  69. Janik MJ, Taylor CD, Neurock M. First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide. Top Catal, 2007, 46: 306–319

    Article  CAS  Google Scholar 

  70. Taylor C, Kelly RG, Neurock M. Theoretical analysis of the nature of hydrogen at the electrochemical interface between water and a Ni(111) single-crystal electrode. J Electrochem Soc, 2007, 154: F55–F64

    Article  CAS  Google Scholar 

  71. Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach. J Phys Chem B, 2005, 109: 11622–11633

    Article  CAS  Google Scholar 

  72. Fang YH, Liu ZP. Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials. J Phys Chem C, 2009, 113: 9765–9772

    Article  CAS  Google Scholar 

  73. Tsiplakides D, Archonta D, Vayenas CG. Absolute potential measurements in solid and aqueous electrochemistry using two Kelvin probes and their implications for the electrochemical promotion of catalysis. Top Catal, 2007, 44: 469–479

    Article  CAS  Google Scholar 

  74. Reiss H, Heller A. The absolute potential of the standard hydrogen electrode-a new estimate. J Phys Chem, 1985, 89: 4207–4213

    Article  CAS  Google Scholar 

  75. Cuesta A. Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: the potential of zero charge of Pt(111). Surf Sci, 2004, 572: 11–22

    Article  CAS  Google Scholar 

  76. Iwasita T, Xia XH. Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge. J Electroanal Chem, 1996, 411: 95–102

    Article  Google Scholar 

  77. Ranke W. Low-temperature adsorption and condensation of O2, H2O and NO on Pt(111), studied by core level and valence band photoemission. Surf Sci, 1989, 209: 57–76

    Article  CAS  Google Scholar 

  78. Kiskinova M, Pirug G, Bonzel HP. Adsorption and decomposition of H2O on a K-covered Pt(111) surface. Surf Sci, 1985, 150: 319–338

    Article  CAS  Google Scholar 

  79. Jinnouchi R, Anderson AB. Aqueous and surface redox potentials from self-consistently determined Gibbs energies. J Phys Chem C, 2008, 112: 8747–8750

    Article  CAS  Google Scholar 

  80. Jinnouchi R, Anderson AB. Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory. Phys Rev B, 2008, 77: 245417

    Article  CAS  Google Scholar 

  81. Wang HF, Liu ZP. Formic Acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C, 2009, 113: 17502–17508

    Article  CAS  Google Scholar 

  82. Fattebert JL, Gygi F. Density functional theory for efficient ab initio molecular dynamics simulations in solution. J Comput Chem, 2002, 23: 662–666

    Article  CAS  Google Scholar 

  83. Beni G, Schiavone LM, Shay JL, Dautremontsmith WC, Schneider B S. Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide-films. Nature, 1979, 282: 281–283

    Article  CAS  Google Scholar 

  84. Bockris JOM. Hydrogen economy in the future. Int J Hydrogen Energy, 1999, 24: 1–15

    Article  CAS  Google Scholar 

  85. Damjanov A, Dey A, Bockris JOM. Kinetics of oxygen evolution and disslution on platinum electrodes. Electrochim Acta, 1966, 11: 791–814

    Article  Google Scholar 

  86. Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta, 1984, 29: 1503–1512

    Article  CAS  Google Scholar 

  87. Marshall AT, Sunde S, Tsypkin A, Tunold R. Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int J Hydrogen Energy, 2007, 32: 2320–2324

    Article  CAS  Google Scholar 

  88. Anderson AB. Reactions and structures of water on clean and oxygen covered pt(111) and fe(100). Surf Sci, 1981, 105: 159–176

    Article  CAS  Google Scholar 

  89. Anderson AB, Grantscharova E. Potential dependence of co(ads) oxidation by oh(ads) on platinum anodes-molecular-orbital theory. J Phys Chem, 1995, 99: 9143–9148

    Article  CAS  Google Scholar 

  90. Anderson AB, Grantscharova E. Catalytic effect of ruthenium in ruthenium-platinum alloys on the electrooxidation of methanol-molecular-orbital theory. J Phys Chem, 1995, 99: 9149–9154

    Article  CAS  Google Scholar 

  91. Anderson AB, Grantscharova E, Seong S. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J Electrochem Soc, 1996, 143: 2075–2082

    Article  CAS  Google Scholar 

  92. Seong S, Anderson AB. Water dissociation on Pt(111) and (100) anodes: Molecular orbital theory. J Phys Chem, 1996, 100: 11744–11747

    Article  CAS  Google Scholar 

  93. Cai Y, Anderson AB. Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions. J Phys Chem B, 2005, 109: 7557–7563

    Article  CAS  Google Scholar 

  94. Roques RM, Anderson AB. Theory for the potential shift for OHads formation on the Pt skin on Pt3Cr(111) in acid. J Electrochem Soc, 2004, 151: E85–E91

    Article  CAS  Google Scholar 

  95. Roques J, Anderson AB. Electrode potential-dependent stages in OHads formation on the Pt3Cr alloy (111) surface. J Electrochem Soc, 2004, 151: E340–E347

    Article  CAS  Google Scholar 

  96. Roques J, Anderson AB, Murthi VS, Mukerjee S. Potential shift for OH( ads) formation on the Pt skin on Pt3Co-(111) electrodes in acid. J Electrochem Soc, 2005, 152: E193–E199

    Article  CAS  Google Scholar 

  97. Bolzan AE, Chialvo AC, Arvia AJ. Fast faradaic processes observed during the potentiodynamic polarization of polycrystalline palladium in acid electrolyte. J Electroanal Chem, 1984, 179: 71–82

    Article  CAS  Google Scholar 

  98. Tateishi N, Yahikozawa K, Nishimura K, Takasu Y. Hydrogen electrode-reaction on electrodes of glassy carbon-supported ultrafine pd particles in alkaline media. Electrochim Acta, 1992, 37: 2427–2432

    Article  CAS  Google Scholar 

  99. Taylor CD, Kelly RG, Neurock M. A first-principles analysis of the chemisorption of hydroxide on copper under electrochemical conditions: A probe of the electronic interactions that control chemisorption at the electrochemical interface. J Electroanal Chem, 2007, 607: 167–174

    Article  CAS  Google Scholar 

  100. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK. Electrolysis of water on oxide surfaces. J Electroanal Chem, 2007, 607: 83–89

    Article  CAS  Google Scholar 

  101. Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts. Surf Sc Re, 2002, 45: 121–229

    Google Scholar 

  102. Zhang J, Sasaki K, Sutter E, Adzic RR. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315: 220–222

    Article  CAS  Google Scholar 

  103. Xiao L, Zhuang L, Liu Y, Lu J, Abruna HD. Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc, 2009, 131: 602–608

    Article  CAS  Google Scholar 

  104. Rossmeisl J, Norskov JK. Electrochemistry on the computer: Understanding how to tailor the metal overlayers for the oxygen reduction reaction (A perspective on the article, “Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces”, by AU Nilekar and M. Mavrikakis). Surf Sci, 2008, 602: 2337–2338

    Article  CAS  Google Scholar 

  105. Wang JX, Uribe FA, Springer TE, Zhang JL, Adzic RR. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss, 2008, 140: 347–362

    Article  CAS  Google Scholar 

  106. Nilekar AU, Xu Y, Zhang JL, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal, 2007, 46: 276–284

    Article  CAS  Google Scholar 

  107. Clouser SJ, Huang JC, Yeager E. Temperature-dependence of the tafel slope for oxygen reduction on platinum in concentrated phosphoric-acid. J Appl Electrochem, 1993, 23: 597–605

    Article  CAS  Google Scholar 

  108. Li X, Gewirth AA. Oxygen electroreduction through a superoxide intermediate on Bi-modified Au surfaces. J Am Chem Soc, 2005, 127: 5252–5260

    Article  CAS  Google Scholar 

  109. Anderson AB, Roques J, Mukerjee S, Murthi VS, Markovic NM, Stamenkovic V. Activation energies for oxygen reduction on platinum alloys: Theory and experiment. J Phys Chem B, 2005, 109: 1198–1203

    Article  CAS  Google Scholar 

  110. Damjanovic A, Sepa DB. An analysis of the pH-dependence of enthalpies and gibbs energies of activation for O2 reduction at Pt electrodes in acid-solutions. Electrochim Acta, 1990, 35: 1157–1162

    Article  CAS  Google Scholar 

  111. Grgur BN, Markovic NM, Ross PN. Temperature dependent oxygen electrochemistry on platinum low index single crystal surfaces in acid solutions. Can J Chem, 1997, 75: 1465–1471

    Article  CAS  Google Scholar 

  112. Janik MJ, Taylor CD, Neurock M. First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J Electrochem Soc, 2009, 156: B126–B135

    Article  CAS  Google Scholar 

  113. Anderson AB, Cai Y, Sidik RA, Kang DB. Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum. J Electroanal Chem, 2005, 580: 17–22

    Article  CAS  Google Scholar 

  114. Damjanov. A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta, 1967, 12: 615–&

    Article  Google Scholar 

  115. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed, 2006, 45: 2897–2901

    Article  CAS  Google Scholar 

  116. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem, 2009, 1: 552–556

    Article  CAS  Google Scholar 

  117. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS. Surface-oxide growth at platinum electrodes in aqueous H2SO4 Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim Acta, 2004, 49: 1451–1459

    CAS  Google Scholar 

  118. Komanicky V, Chang KC, Menzel A, Markovic NM, You H, Wang X, Myers D. Stability and dissolution of platinum surfaces in perchloric acid. J Electrochem Soc, 2006, 153: B446–B451

    Article  CAS  Google Scholar 

  119. Gu ZH, Balbuena PB. Absorption of atomic oxygen into subsurfaces of Pt(100) and Pt(111): Density functional theory study. J Phys Chem C, 2007, 111: 9877–9883

    Article  CAS  Google Scholar 

  120. Greeley J, Norskov JK. Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J Phys Chem C, 2009, 113: 4932–4939

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiPan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., Liu, Z. Electrochemical reactions at the electrode/solution interface: Theory and applications to water electrolysis and oxygen reduction. Sci. China Chem. 53, 543–552 (2010). https://doi.org/10.1007/s11426-010-0047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0047-6

Keywords

Navigation