Skip to main content
Log in

Recent progress in interface modification for dye-sensitized solar cells

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Interface modification on the TiO2/dye/electrolyte interface of dye-sensitized solar cells (DSCs) is one of the most effective approaches to suppress the charge recombination, improve electron injection and transportation, and thus ameliorate the conversion efficiency and stability of DSCs. Conventional research focusing on the photoanodes interface modification before sensitization in dye-sensitized solar cells has been carried out and reviewed. However, recent studies showed that post-modification after sensitization of the TiO2 electrode also plays a significant role on the TiO2/dye/electrolyte interface. This post-modification using the immersing method could deprotonate dye molecules, prohibit the dye aggregation and retard the recombination reaction. As a result, it has great influence on the devices’ photovoltaic performance. This interface modification could also provide an approach to broaden the response of the solar spectrum by introducing an alternative assembling structure. An in-situ meaning of using a co-adsorbent is employed to modify the interface in the DSCs, which could retard the aggregation of the dye molecules and enhance the conversion efficiency. In addition, electrolyte additives can be used to modify the TiO2/dye/electrolyte interface through some unique mechanisms. Based on the background of interface modification of photoanodes before sensitization, this review introduces various interface modifications after sensitization of dye-sensitized solar cells and their mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high effiency, solar cell based on dye-sensitized TiO2 film. Nature, 1991, 353: 737–739

    Article  Google Scholar 

  2. Barbé CJ, Arendse, F, Comte P, Jirousek, M, Lenzmann F, Shklover V, Grätzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80(12): 3157–3171

    Article  Google Scholar 

  3. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline Tio2-based solar cells. J Am Chem Soc, 2001, 123: 1613–1624

    Article  CAS  Google Scholar 

  4. Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A: Chem, 2004, 164: 3–14

    Article  CAS  Google Scholar 

  5. Grätzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog Photovolt Res Appl, 2000, 8: 171–185

    Article  Google Scholar 

  6. Liu DX, Zhao B, Shen P, Huang H, Liu LM, Tan ST. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Sci China Ser B: Chem, 2009, 52: 1198–1209

    Article  CAS  Google Scholar 

  7. Wang CL, Sun L, Xie KP, Lin CJ. Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalytic response to visible light. Sci China, Ser B: Chem, 2009, 52: 2148–2155

    Article  CAS  Google Scholar 

  8. Parkinson BA, Spitler MT. Recent advances in high quantum yield dye sensitization of semiconductor electrodes. Electrochim Acta, 1992, 37(5): 943–948

    Article  CAS  Google Scholar 

  9. Hagfeldt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68

    Article  CAS  Google Scholar 

  10. Bonhôte P, Moser JE, Vlachopoulos N, Walder L, Zakeeruddin SM, Humphry-Baker R, Péchy P, Grätzel M. Photoinduced electron transfer and redox-type photochromism of a TiO2-anchored molecular diad. Chem Commun, 1996: 1163-1164

  11. Argazzi R, Bignozzi CA. Remote interfacial electron transfer from supramolecular sensitizers. Inorg Chem, 1997, 36: 2–3

    Article  CAS  Google Scholar 

  12. Grätzel M. Mesoporous oxide junctions and nanostructured solar cells. Curr Opin Colloid Interface Sci, 1999, 4: 314–321

    Article  Google Scholar 

  13. Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater Sci Eng R, 2009, 63: 81–99

    Article  CAS  Google Scholar 

  14. Bandaranayake KMP, Senevirathna MKI, Weligamuwa PMGMP, Tennakone K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coord Chem Rev, 2004, 248: 1277–1281

    Article  CAS  Google Scholar 

  15. Nazeeruddin MK, Rodicio AKI, Humpbry-Baker R, Liska E, Müller P, Vlachopoulos N, Grätzel M. Conversion of light to electricity by cis-xzbis (2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=C1, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc, 1993,115: 6382–6390

    Article  CAS  Google Scholar 

  16. Frank AJ, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165–1179

    Article  CAS  Google Scholar 

  17. Frank AJ, van de Lagemaat J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. J Phys Chem B, 2001, 105: 11194–11205

    Article  CAS  Google Scholar 

  18. Hagfeldt A, Lindquistb SE, Grätzel M. Charge carrier separation and charge transport in nanocrystalline junctions. Sol Energy Mater Sol Cells, 1994, 32(3): 245–257

    Article  CAS  Google Scholar 

  19. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc, 1996, 118: 6716–6723

    Article  CAS  Google Scholar 

  20. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes. J Solid State Chem, 1999, 3:337–347

    CAS  Google Scholar 

  21. Tachibana Y, Moser JE, Grätzel M, Klug DR, Durrant JR. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem, 1996, 100: 20056–20062

    Article  CAS  Google Scholar 

  22. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J Am Chem Soc, 2003, 125: 475–482

    Article  CAS  Google Scholar 

  23. Diamant Y, Chen SG, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J Phys Chem B, 2003, 107: 1977–1981

    Article  CAS  Google Scholar 

  24. Nasr C, Kamat PV, Hotchandani S. Photoelectrochemistry of composite semiconductor thin films. Photosensitization of the SnO2/TiO2 coupled system with a ruthenium polypyridyl complex. J Phys Chem B, 1998, 102: 10047–10056

    Article  CAS  Google Scholar 

  25. Santz PA, Kamat PV. Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys, 2002, 4: 198–203

    Google Scholar 

  26. Bedja I, Kamat PV. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites. J Phys Chem, 1995, 99: 9182–9188

    Article  CAS  Google Scholar 

  27. Chen SG, Chappel S, Diamant Y, Zaban A. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem Mater, 2001, 13: 4629–4634

    Article  CAS  Google Scholar 

  28. Tada H, Hattori A, Tokihisa Y, Imai K, Tohge, N, Ito S. A patterned-TiO2/SnO2 bilayer type photocatalyst. J Phys Chem B, 2000, 104: 4585–4587

    Article  CAS  Google Scholar 

  29. Zaban A, Chen SG, Chappela S, Gregg BA. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem Commun, 2000: 2231–2232

  30. Kay A, Grätzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater, 2002, 14: 2930–2935

    Article  CAS  Google Scholar 

  31. Kumara GRRA, Tennakone K, Perera VPS, Konno A, Kaneko S, Okuya M. Suppression of recombinations in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide. J Phys D: Appl Phys, 2001, 34: 868–873

    Article  CAS  Google Scholar 

  32. Tennakone K, Perera VPS, Kottegoda IRM, De Silva LAA, Kumara GRRA, Konno A. Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. J Electron Mater, 2001, 30: 992–996

    Article  CAS  Google Scholar 

  33. Gregg BA, Pichot F, Ferrere S, Fields CL. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B, 2001, 105: 1422–1429

    Article  CAS  Google Scholar 

  34. Diamant Y, Chappel S, Chen SG, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord Chem Rev, 2004, 248: 1271–1276

    Article  CAS  Google Scholar 

  35. Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater, 1998, 10: 3825–3832

    Article  CAS  Google Scholar 

  36. Wang P, Wang LD, Li B, Qiu Y. Improved voltage and fill factor by using zin oxide thin film as a barrier layer in dye-sensitized solar cells. Chin Phys Lett, 2005, 22: 2708–2710

    Article  CAS  Google Scholar 

  37. Kim SS, Yum JH, Sung YE. Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. J Photochem Photobiol A: Chem, 2005, 171: 269–273

    Article  CAS  Google Scholar 

  38. Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin, H. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 2005, 21: 10332–10335

    Article  CAS  Google Scholar 

  39. O’Regan BC, Scully S, Mayer AC, Palomares E, Durrant J. The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J Phys Chem B, 2005, 109: 4616–4623

    Article  CAS  Google Scholar 

  40. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR. Slow charge recombination in dye-sensitized solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem Commun, 2002: 1464-1465

  41. Menzies DB, Bourgeois L, Cheng YB, Simon GP, Brack N, Spiccia L. Characterization of nanostructured core-shell working electrodes for application in dye-sensitized solar cells. Surf Coat Technol, 2005, 198: 118–122

    Article  CAS  Google Scholar 

  42. Lee S, Kim JY, Hong KS, Jung HS, Lee JK, Shin H. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Sol Energy Mater Sol Cells, 2006, 90: 2405–2412

    Article  CAS  Google Scholar 

  43. Zaban A, Chen SG, Sukenik CN, Pizem H. Molecular modification of the electronic properties of nanoporous TiO2 electrodes. Abstr Paper Am Chem Soc, 2001, 222: U236–U236

    Google Scholar 

  44. Wu XM, Wang LD, Luo F, Ma BB, Zhan C, Qiu Y. BaCO3 modification of TiO2 electrodes in quasi-solid-state dye-sensitized solar cells: Performance improvement and possible mechanism. J Phys Chem C, 2007, 111: 8075–8079

    Article  CAS  Google Scholar 

  45. Kroeze JE, Savenije TJ, Warman JM. Electrodeless determination of the trap density, decay kinetics, and charge separation efficiency of dye-sensitized nanocrystalline TiO2. J Am Chem Soc, 2004, 126: 7608–7618

    Article  CAS  Google Scholar 

  46. Haque SA, Tachibana Y, Willis RL, Mose, JE, Grätzel M, Klug DR, Durrant JR. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B, 2000, 104: 538–547

    Article  CAS  Google Scholar 

  47. Nelson J, Haque SA, Klug DR, Durrant JR. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Phys Rev B, 2001, 63: 205321-1–205321-9

    Article  CAS  Google Scholar 

  48. Park NG, Schlichthörl G, van de Lagemaat J, Cheong HM, Mascarenhas A, Frank AJ. Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. J Phys Chem B, 1999, 103: 3308–3314

    Article  CAS  Google Scholar 

  49. Tennakone K, Kumara GRRA, Kottegoda IRM, Perera VPS. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem Commun, 1999: 15-16

  50. Wang P, Wang LD, Ma BB, Li B, Qiu Y. TiO2 surface modification and characterization with nanosized pbs in dye-sensitized solar cells. J Phys Chem B, 2006, 110: 14406–14409

    Article  CAS  Google Scholar 

  51. Ma BB, Luo F, Wang LD, Wu XM, Zhan C, Qiu Y. Structure and morphology of nanosized PbS on TiO2 nanoporous film in dye-sensitized solar cells. Jpn J App Phys, 2007, 46(12): 7745–7748

    Article  CAS  Google Scholar 

  52. Ramakrishna G, Singh AK, Palit DK, Ghosh HN. Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin. J Phys Chem B, 2004, 108: 1701–1707

    Article  CAS  Google Scholar 

  53. van de Lagemaat J, Park NG, Frank AJ. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques. J Phys Chem B, 2000, 104: 2044–2052

    Article  CAS  Google Scholar 

  54. Kopidakis N, Schiff EA, Park NG, van de Lagemaat J, Frank AJ. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. J Phys Chem B, 2000, 104: 3930–3936

    Article  CAS  Google Scholar 

  55. Grätzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett, 2005, 34(1): 8–13

    Article  Google Scholar 

  56. Schlichthörl G, Park NG, Frank AJ. Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B, 1999, 103: 782–791

    Article  Google Scholar 

  57. Lindström H, Rensmo H, Södergren S, Solbrand A, Lindquist SE. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. J Phys Chem, 1996, 100: 3084–3088

    Article  Google Scholar 

  58. Zeng LY, Dai SY, Wang KJ, Pan X, Shi CW, Guo L. Mechanims of enhanced performance of dye-sensitized solar cell based TiO2 films treated by titanium tetrachloride. Chin Phys Lett, 2004, 21(9): 1835–1837

    Article  CAS  Google Scholar 

  59. Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin SM, Kay A, Nazeeruddin MK, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I-I 3 ) and dye-sensitized solar cells. Chem Comm, 2005: 4351-4353

  60. Sommeling PM, O’Regan BC, Haswell RR, Smit HJP, Bakker NJ, Smits JJT, Kroon JM, van Roosmalen JAM. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B, 2006, 110: 19191–19197

    Article  CAS  Google Scholar 

  61. Wang ZS, Yanagida M, Sayama K, Sugihara H. Electronic-Insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency. Chem Mater, 2006, 18: 2912–2916

    Article  CAS  Google Scholar 

  62. Nilsing M, Lunell S, Persson P, Ojamäe L. Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations. Surf Sci, 2005, 582: 49–60

    Article  CAS  Google Scholar 

  63. Shklover V, Ovchinnikov Yu E, Braginsky LS, Zakeeruddin SM, Grätzel M. Structure of organic/inorganic interface in assembled materials comprising molecular components. crystal structure of the sensitizer bis[(4,4′-carboxy-2,2-bipyridine)(thiocyanato)]ruthenium(II). Chem Mater, 1998, 10: 2533–2541

    Article  CAS  Google Scholar 

  64. Wenger B, Grätzel M, Moser JE. Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc, 2005, 127: 12150–12151

    Article  CAS  Google Scholar 

  65. Fillinger A, Soltz D, Parkinson BA. Dye sensitization of natural anatase crystals with a ruthenium-based dye. J Electrochem Soc, 2002, 149(9): A1146–A1156

    Article  CAS  Google Scholar 

  66. Ushiroda S, Ruzycki N, Lu Y, Spitler MT, Parkinson BA. Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes. J Am Chem Soc, 2005, 127: 5158–5168

    Article  CAS  Google Scholar 

  67. Luo F, Wang LD, Ma BB, Qiu Y. Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells. J Photochem Photobiol A: Chem, 2008, 197: 375–381

    Article  CAS  Google Scholar 

  68. Gao R, Wang LD, Ma BB, Zhan C, Qiu Y. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells. Langmuir, 2010, 26(4): 2460–2465

    Article  CAS  Google Scholar 

  69. Ma BB, Gao R, Wang LD, Luo F, Zhan C, Li JL, Qiu Y. Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell. J Photochem Photobiol A: Chem., 2009, 202: 33–38

    Article  CAS  Google Scholar 

  70. Clifford JN, Palomares E, Nazeeruddin Md K, Thampi R, Grätzel M, Durrant JR. Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J Am Chem Soc, 2004, 126: 5670–5671

    Article  CAS  Google Scholar 

  71. Choi H, Kim S, Kang SO, Ko J, Kang MS, Clifford JN, Forneli A, Palomares E, Nazeeruddin MK, Grätzel M. Stepwise cosensitization of nanocrystalline tio2 films utilizing Al2O3 layers in dye-sensitized solar cells. Angew Chem Int Ed, 2008, 47: 8259–8263

    Article  CAS  Google Scholar 

  72. Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Censo DD, Nazeeruddin MK, Grätzel M. Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc, 2006, 128: 16701–16707

    Article  CAS  Google Scholar 

  73. Yum JH, Walter P, Huber S, Rentsch D, Geiger T, Nüesch F, De Angelis F, Grätzel M, Nazeeruddin MK. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J Am Chem Soc, 2007, 129: 10320–10321

    Article  CAS  Google Scholar 

  74. Wang XF, Kitao O, Zhou HS, Tamiaki H, Sasaki S. Efficient dye-sensitized solar cell based on oxo-bacteriochlorin sensitizers with broadband absorption capability. J Phys Chem C, 2009, 113: 7954–7961

    Article  CAS  Google Scholar 

  75. Li X, Lin H, Zakeeruddin SM, Grätzel M, Li JB. Interface modification of dye-sensitized solar cells with pivalic acidto enhance the open-circuit voltage. Chem Lett, 2009, 38: 322–323

    Article  CAS  Google Scholar 

  76. Boschloo G, Häggman L, Hagfeldt A. Quantification of the effect of 4-tert-butylpyridine addition to I/I 3 redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B, 2006, 110: 13144–13150

    Article  CAS  Google Scholar 

  77. Stathatos E, Lianos P, Zakeeruddin SM, Liska P, Grätzel M. A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chem Mater, 2003, 15: 1825–1829

    Article  CAS  Google Scholar 

  78. Kusama H, Arakawa H. Influence of aminotriazole additives in electrolytic solution on dye-sensitized solar cell performance. J Photochem Photobiol A: Chem, 2004, 164: 103–110

    Article  CAS  Google Scholar 

  79. Boschloo G, Lindström H, Magnusson E, Holmberg A, Hagfeldt A. Optimization of dye-sensitized solar cells prepared by compression method. J Photochem Photobiol A: Chem., 2002, 148: 11–15

    Article  CAS  Google Scholar 

  80. Boschloo G, Hagfeldt A. Photoinduced absorption spectroscopy of dye-sensitized nanostructured TiO2. Chem Phys Lett, 2003, 370: 381–386

    Article  CAS  Google Scholar 

  81. Wang P, Zakeeruddin SM, Exnarb I, Grätzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun, 2002: 2972-2973

  82. Kato T, Fujimoto M, Kado T, Sakaguchi S, Kosugi D, Shiratuchi R, Takashima W, Kaneto K, Hayase S. Additives for increased photoenergy conversion efficiencies of quasi-solid, dye-sensitized solar cells. J Electrochem Soc, 2005, 152(6): A1105–A1108

    Article  CAS  Google Scholar 

  83. Zhu YF, Wang LD, Shi YT, Gao R, Qiu Y. Effect of Mg(OOCCH3)2 as additives in the electrolytes on the photovoltaic performance of DSCs[C]. The 6th National Symposium on Organic Molecule and Polymer Light. Emitting and Laser. Shanghai, China, Nov. 2009. 15–18

  84. Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett, 2001, 79(13): 2085–2087

    Article  CAS  Google Scholar 

  85. Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett, 2007, 7(11): 3372–3376

    Article  CAS  Google Scholar 

  86. Shi YT, Zhan C, Wang LD, Ma BB, Gao R, Zhu YF, Qiu Y. The electrically conductive function of high-molecular weight poly(eth-ylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells. Phys Chem Chem Phys, 2009, 11: 4230–4235

    Article  CAS  Google Scholar 

  87. Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in nonaqueous solvents. J Phys Chem, 1993, 97: 1426–1430

    Article  CAS  Google Scholar 

  88. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B, 1997, 101: 7717–7722

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiDuo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Gao, R., Wang, L. et al. Recent progress in interface modification for dye-sensitized solar cells. Sci. China Chem. 53, 1669–1678 (2010). https://doi.org/10.1007/s11426-010-4042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4042-8

Keywords

Navigation