Skip to main content
Log in

Eu(III) adsorption on rutile: Batch experiments and modeling

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Eu(III) adsorption on rutile was investigated as a function of contact time, pH, ionic strength and Eu(III) concentration by using a batch experimental method. The effects of carbonate, sulfate, and phosphate were also studied. It was found that the kinetics of Eu(III) adsorption on rutile could be described by a pseudo-second-order model. The adsorption of Eu(III) on rutile is strongly pH-dependent, but relatively insensitive to ionic strength. A double layer model (DLM) with two inner-sphere Eu(III) surface complexes was applied to quantitatively interpret the adsorption of Eu(III) on rutile. There were no apparent effects of carbonate and sulfate on Eu(III) adsorption, whereas the presence of phosphate promoted Eu(III) adsorption on rutile. The surface complexes of Eu(III) on rutile were evidenced by X-ray photoelectron spectroscopy (XPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradbury MH, Baeyens B. Sorption of Eu on Na- and Ca-montmorillonites: Experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta, 2002, 66: 2325–2334

    Article  CAS  Google Scholar 

  2. Guo ZJ, Wang SR, Shi KL, Wu WS. Experimental and modeling studies of Eu(III) sorption on TiO2. Radiochem Acta, 2009, 97: 283–289

    Article  CAS  Google Scholar 

  3. Guo ZJ, Xu J, Shi KL, Tang YQ, Wu WS, Tao ZY. Eu(III) adsorption/desorption on Na-bentonite: Experimental and modeling studies. Colloids Surf A: Physicochem Eng Aspects, 2009, 339: 126–133

    Article  CAS  Google Scholar 

  4. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H. Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modeling. Geochim Cosmochim Acta, 2006, 70: 4563–4578

    Article  CAS  Google Scholar 

  5. Jakobsson A. Measurement and modeling of Th sorption onto TiO2. J Colloid Interface Sci, 1999, 220: 367–373

    Article  CAS  Google Scholar 

  6. Tan XL, Fan QH, Wang XK, Grambow B. Eu(III) sorption to TiO2 (anatase and rutile): Batch, XPS, and EXAFS studies. Environ Sci Technol, 2009, 43: 3115–3121

    Article  CAS  Google Scholar 

  7. Tan XL, Fang M, Li JX, Lu Y, Wang XK. Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater, 2009, 168: 458–465

    Article  CAS  Google Scholar 

  8. Bourikas K, Spanos N, Lycourghiotis A. Advances in the mechanism of deposition of the CrO 2−4 , HCrO 4 , and Cr2O 2−7 species on the surface of titania consisting of anatase and rutile. Langmuir, 1997, 13: 435–444

    Article  CAS  Google Scholar 

  9. Horányi G. Investigation of the specific adsorption of sulfate ions on powdered TiO2. J Colloid Interface Sci, 2003, 261: 580–583

    Article  Google Scholar 

  10. Konstantinou M, Pashalidis I. Competitive sorption of Cu(II), Eu(III) and U(VI) ions on TiO2 in aqueous solutions-a potentiometric study. Colloids Surf A: Physicochem Eng Aspects, 2008, 324: 217–221

    Article  CAS  Google Scholar 

  11. Ridley MK, Hiemstra T, Riemsdijk WH, Machesky ML. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model. Geochim Cosmochim Acta, 2009, 73: 1841–1856

    Article  CAS  Google Scholar 

  12. Dario M, Molera M, Allard B. Sorption of europium on TiO2 and cement at high pH in the presence of organic ligands. J Radioanal Nucl Chem, 2006, 270: 495–505

    Article  CAS  Google Scholar 

  13. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem, 1999, 34: 451–465

    Article  CAS  Google Scholar 

  14. Dzombak DA, Morel FMM. Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley-Interscience, 1990

  15. Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T. Nagra/PSI Chemical Thermodynamic Data Base 01/01.Universal Publishers/uPUBLISH.com USA, available from: http://www.upublish.com/books/hummel.htm. Also issued as Nagra Technical Report NTB 02-16, Nagra, Wettingen, Switzerland. 2002

  16. Herbelin A, Westall J. FITEQL: A computer program for determination of chemical equilibrium constants from experimental data. Version 3.1. Department of Chemistry, Oregon State University, Oregon. 1994

    Google Scholar 

  17. Shi KL, Wang XF, Guo ZJ, Wang SR, Wu WS. Se(IV) sorption on TiO2: Sorption kinetics and surface complexation modeling. Colloids Surfaces A: Physicochem Eng Aspects, 2009, 349: 90–95

    Article  CAS  Google Scholar 

  18. Sparks DL. Kinetics of sorption/release reactions at the soil mineral/water interface, in: D.L. Sparks (Ed.), Soil Physical Chemistry, 2nd ed., CRC Press, Boca Raton, FL, 1999, 135–191

    Google Scholar 

  19. Shao DD, Xu D, Wang SW, Fan QH, Wu WS, Dong YH, Wang XK. Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength. Sci China Ser B: Chem, 2009, 52: 362–371

    Article  CAS  Google Scholar 

  20. Machesky ML, Wesolowski DJ, Palmer DA, Hayashi KI. Potentiometric titrations of rutile suspensions to 250 °C. J Colloid Interface Sci, 1998, 200: 298–309

    Article  CAS  Google Scholar 

  21. Spanos N, Georgiadou I, Lycourghiotis A. Investigation of rutile, anatase, and industrial titana/water solution interfaces using potentiometric titration and microelectrophoreses. J Colloid Interface Sci, 1995, 172: 374–382

    Article  CAS  Google Scholar 

  22. Stumm W, Morgan JJ. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed. New York: John Wiley & Sons, Inc., 1996

    Google Scholar 

  23. Ridley MK, Machesky ML, Wesolowski DJ, Palmer DA. Calcium adsorption at the rutile-water interface: A potentiometric study in NaCl media to 250 °C. Geochim Cosmochim Acta, 1999, 63: 3087–3096

    Article  CAS  Google Scholar 

  24. Machesky ML, Palmer DA, Wesolowski DJ. Hydrogen ion adsorption at the rutile-water interface to 250 °C. Geochim Cosmochim Acta, 1994, 58: 5627–5632

    Article  CAS  Google Scholar 

  25. Kosmulski M. The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci, 2002, 99: 255–264

    Article  CAS  Google Scholar 

  26. Hayes KF, Leckie JO. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci, 1987, 115: 564–572

    Article  CAS  Google Scholar 

  27. Connor PA, McQuillan AJ. Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15: 2916–2921

    Article  CAS  Google Scholar 

  28. Hadjiivanov KI, Klissurski DG, Davydov AA. Study of phosphate modified TiO2 (anatase). J Catal, 1989, 116: 498–505

    Article  CAS  Google Scholar 

  29. McBride MB. Sorption of Copper(II) on aluminum hydroxide as affected by phosphate. Soil Sci Soc Am J, 1985, 49: 843–846

    Article  CAS  Google Scholar 

  30. Guo ZJ, Yan C, Xu J, Wu WS. Sorption of U(VI) and phosphate on γ-alumina: Binary and ternary sorption systems. Colloids Surf A: Physicochem Eng Aspects, 2009, 336: 123–129

    Article  CAS  Google Scholar 

  31. Zeng QG, Ding ZJ, Zhang ZM. Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature. J Lumin, 2006, 118: 301–307

    Article  CAS  Google Scholar 

  32. Mercier F, Alliot C, Bion L, Thromat N, Toulhoat P. XPS study of Eu(III) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds EumXxOy. J Electron Spectroscopy Related Phenomena, 2006, 150: 21–26

    Article  CAS  Google Scholar 

  33. Drot R, Simoni E, Alnot M, Ehrhardt JJ. Structural environment of Uranium (VI) and Europium (III) species sorbed onto phosphate surfaces: XPS and optical spectroscopy studies. J Colloid Interface Sci, 1998, 205: 410–416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiJun Guo or WangSuo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Shi, K., Guo, Z. et al. Eu(III) adsorption on rutile: Batch experiments and modeling. Sci. China Chem. 53, 2628–2636 (2010). https://doi.org/10.1007/s11426-010-4086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4086-9

Keywords

Navigation