Skip to main content
Log in

Ln2MO4 cathode materials for solid oxide fuel cells

  • Reviews
  • Special Topic · Inorganic Solid State Chemistry and Energy Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

One of the major challenges to develop “intermediate temperature” solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material with the formula Ln2MO4, Ln = La, Pr, Nd, Sm; M = Ni, Cu, Fe, Co, Mn, is presented. The composition-dependent TEC, electrical conductivity and oxygen transport property are considered. The Ln2MO4 materials exhibit improved chemical stability and compatibility with most of the traditional electrolytes. The complete fuel cells integrated with Ln2MO4 materials as cathodes show promising results. Furthermore, these materials are considered as cathodes of protonic ceramic fuel cell (PCFC), and/or anodes of high temperature steam electrolysis (HTSE). First results show excellent performances. The versatility of these Ln2MO4 materials is explained on the basis of structural features and the ability to accommodate oxygen non-stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitterdorfer A, Gauckler LJ. La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system. Solid State Ionics, 1998, 111: 185–218

    Article  CAS  Google Scholar 

  2. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Huo LH, Stevens P. Electrode properties of Ln2NiO4+δ (Ln=La, Nd, Pr) AC impedance and DC polarization studies. J Electrochem Soc, 2006, 153: A1547–A1553

    Article  CAS  Google Scholar 

  3. Sayers R, Liu J, Rustumji B, Skinner SJ. Novel K2NiF4-type materials for solid oxide fuel cells: compatibility with electrolytes in the intermediate temperature range. Fuel Cell, 2008, 5: 338–343

    Article  Google Scholar 

  4. Hernández AM, Mogni L, Caneiro A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes. Int J Hydrogen Energy, 2008, 33: 3808–3817

    Article  Google Scholar 

  5. Li Q, Zhao H, Huo LH, Sun LP, Cheng XL, Grenier JC. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs. Electrochem Commun, 2007, 9: 1508–1512

    Article  CAS  Google Scholar 

  6. Sun LP, Li Q, Zhao H, Huo LH, Grenier JC. Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources, 2008, 183: 43–48

    Article  CAS  Google Scholar 

  7. Caronna T, Fontana F, Sora IN, Pelosato R, Viganò L. Chemical compatibility of Sr-doped La2CuO4 cathode material with LSGM solid oxide electrolyte. Solid State Ionics, 2010, 181: 1355–1358

    Article  CAS  Google Scholar 

  8. Huang XQ, Zhang FM, Lü Z, Wei B, Li TT, Wang Z, Su WH. Preparation and characteristics of Pr1.6Sr0.4NiO4+YSZ as composite cathode of solid oxide fuel cells. J Phys Chem Solids, 2009, 70: 665–668

    Article  CAS  Google Scholar 

  9. Nie HW, Wen TL, Wang SR, Wang YS, Guth U, Vashook V. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−σ A′αMO4 (A=Pr, Sm; A′=Sr; M=Mn, Ni; α= 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics, 2006, 177: 1929–1932

    Article  CAS  Google Scholar 

  10. Cao Y, Gu HT, Chen H, Zheng YF, Zhou M, Guo LC. Preparation and characterization of Nd2−x SrxCoO4+δ cathodes for intermediate-temperature solid oxide fuel cell. Int J Hydrogen Energy, 2010, 35: 5594–5600

    Article  CAS  Google Scholar 

  11. Aguadero A, Alonso JA, Escudero MJ, Daza L. Evaluation of the La2Ni1−x CuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics, 2008, 179: 393–400

    Article  CAS  Google Scholar 

  12. Ferkhi M, Khelili S, Zerroual L, Ringuedé A, Cassir M. Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1−x CuxO4+δ materials as new cathodes for solid oxide fuel cells. Electrochimica Acta, 2009, 54: 6341–6346

    Article  CAS  Google Scholar 

  13. Al Daroukha M., Vashooka VV, Ullmanna H, Tietzb F, Arual Rajc I. Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion. Solid State Ionics, 2003, 158: 141–150

    Article  Google Scholar 

  14. Minh NQ, Takahashi T. Science and Technology of Ceramic Fuel Cell. Amsterdam: Elsevier, 1995. 117–146

    Book  Google Scholar 

  15. Lim YH, Lee J, Yoon JS, Kim CE, Hwang HJ. Electrochemical performance of Ba0.5Sr0.5CoxFe1−x O3+δ (x=0.2–0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs. J Power Sources, 2007, 171: 79–85

    Article  CAS  Google Scholar 

  16. Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics, 2000, 138: 79–90

    Article  CAS  Google Scholar 

  17. Kharton VV, Kovalevsky AV, Avdeev M, Tsipis EV, Patrakeev MV, Yaremchenko AA, Naumovich EN, Frade JR. Chemically induced expansion of La2NiO4+δ -based materials. Chem Mater, 2007, 19: 2027–2033

    Article  CAS  Google Scholar 

  18. Chen X, Yu J, Adler SB. Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1−x SrxCoO3−δ ). Chem Mater, 2005, 17: 4537–4546

    Article  CAS  Google Scholar 

  19. Kharton V V, Yaremchenko AA, Patrakeev MV, Naumovich EN, Marques FMB. Thermal and chemical induced expansion of La0.3Sr0.7 (Fe,Ga)O3−δ ceramics. J Eur Ceram Soc, 2003, 23: 1417–1426

    Article  CAS  Google Scholar 

  20. Wang YS, Nie HW, Wang SR, Wen TL, Guth U, Valshook V. A2−δ Aσ′BO4-type oxides as cathode materials for IT-SOFCs (A=Pr, Sm; A′=Sr; B=Fe, Co). Mater Lett, 2006, 60: 1174–1178

    Article  CAS  Google Scholar 

  21. Ruffa AR. Empirical determination of thermal expansion in insulators with no experimental input. J Mater Sci, 1980, 15: 2258–2267

    Article  CAS  Google Scholar 

  22. Kharton VV, Viskup AP, Naumovich EN, Marques FMB. Oxygen ion transport in La2NiO4-based ceramics. J Mater Chem, 1999, 9: 2623–2629

    Article  CAS  Google Scholar 

  23. Ding XF, Kong X, Wang X, Jiang JG, Cui C. Characterization and optimization of Ln1.7Sr0.3CuO4 (Ln=La, Nd)-based cathodes for intermediate temperature solid oxide fuel cells. J Alloys Compd, 2010, 502: 472–476

    Article  CAS  Google Scholar 

  24. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens Ph. Oxygen diffusion and transport properties in non-stoichiometric Ln2−x NiO4+δ oxides. Solid State Ionics, 2005, 176: 2717–2725

    Article  CAS  Google Scholar 

  25. Kharton VV, Viskup AP, Kovalevsky AV, Naumovich EN, Marques FMB. Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics, 2001, 143: 337–353

    Article  CAS  Google Scholar 

  26. Zhou W, Ran R, Shao ZP. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ -based cathodes for intermediate-temperature solid-oxide fuel cells: A review. J Power Sources, 2009, 192: 231–246

    Article  CAS  Google Scholar 

  27. Jacobson AJ. Materials for solid oxide fuel cells. Chem Mater, 2010, 22: 660–674

    Article  CAS  Google Scholar 

  28. Pikalova E., Maragou VI, Demina AN, Demin AK, Tsiakaras PE. The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2−δ (Ln=Gd, Sm, La) solid-state electrolyte. J Power Sources, 2008, 181: 199–206

    Article  CAS  Google Scholar 

  29. Jorgensen JD, Debrowski B, Pei S, Richards DR, Hinks DG. Structure of the interstitial oxygen defect in La2CuO4+δ . Phys Rev B, 1989, 40: 2187–2199

    Article  CAS  Google Scholar 

  30. Dailly J, Fourcade S, Largeteau A, Mauvy F, Grenier JC, Marrony M. Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochimi Acta, 2010, 55: 5847–5853

    Article  CAS  Google Scholar 

  31. Boehm E, Bassat JM, Steil MC, Dordor P, Mauvy F, Grenier JC. Oxygen transport properties of La2Ni1−x CuxO4+δ mixed conducting oxides. Solid State Sci, 2003, 5:973–981

    Article  CAS  Google Scholar 

  32. Yaremchenko AA, Kharton VV, Patrakeev MV, Frade JR. p-Type electronic conductivity, oxygen permeability and stability of La2Ni0.9Co0.1O4+δ . J Mater Chem, 2003, 13: 1136–1144

    Article  CAS  Google Scholar 

  33. Bassat JM, Odier P, Loup JP. The semiconductor-to-metal transition in question in La2−x NiO4+ δ (δ > 0 or δ < 0). J Solid State Chem, 1994, 110: 124–135

    Article  CAS  Google Scholar 

  34. Ishikawa K, Shibata W, Watanabe K, Isonaga T, Hashimoto M, Suzuki Y. Metal-semiconductor transition of La2−x NiO4+δ . J Solid State Chem, 1997, 131: 275–281

    Article  CAS  Google Scholar 

  35. Kharton V, Yaremchenko AA, Shaula AL, Patrakeev MV, Naumovich EN, Logvinovich DI, Frade JR, Marques FMB. Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. J Solid State Chem, 2004, 177: 26–37

    Article  CAS  Google Scholar 

  36. Yang XM, Luo LT, Zhong H. Structure of La2−x SrxCoOλ (x=0.0–1.0) and their catalytic properties in the oxidation of CO and C3H8. App Catal A, 2004, 272: 299–303

    Article  CAS  Google Scholar 

  37. Millburn J, Green MA, Neumann DA, Rosseinsky MJ. Evolution of the Structure of the K2NiF4 Phases La2−x SrxNiO4+δ with Oxidation State: Octahedral Distortion and Phase Separation (0.2 ⩽ x ⩽ 1.0). J Solid State Chem, 1999, 145: 401–420

    Article  CAS  Google Scholar 

  38. Goodenough JB, Manthiram A. Crystal chemistry and superconductivity of the copper oxides. J Solid State Chem, 1990, 88: 115–139

    Article  CAS  Google Scholar 

  39. Chen SC, Ramanujachary KV, Greenblatt M. Investigations on the Structural, Electrical and Magnetic Properties of Sr Substituted Ln2NiO4 (Ln = Pr, Sm, Gd). J Solid State Chem, 1993, 105: 444–457

    Article  CAS  Google Scholar 

  40. Zhao H, Mauvy F, Lalanne C, Bassat JM, S. Fourcade, Grenier JC. Solid State Ionics. 2008, 179: 2000–2005

    Article  CAS  Google Scholar 

  41. Bassat JM, Odier P, Villesuzanne A, Marin C, Pouchard M. Solid State Ionics. 2004, 167: 341–347

    Article  CAS  Google Scholar 

  42. Fisher CAJ, PhD Thesis, University of Oxford (1996)

  43. Skinner SJ, Kilner JA. Oxygen diffusion and surface exchange in La2−x SrxNiO4+δ . Solid State Ionics, 2000, 135: 709–712

    Article  CAS  Google Scholar 

  44. Kilner JA, de Souza RA, Fullarton IC. Surface exchange of oxygen in mixed conducting perovskite oxides. Solid state ionics, 1996, 86–88: 703–709

    Article  Google Scholar 

  45. Shaw CKM. PhD Thesis, University of London (2001)

  46. Tejuca LG, Fierro JLG, Tascon JMD. Structure and reactivity of perovskite-type oxides. Adv Catal, 1989, 36: 237–328

    Article  CAS  Google Scholar 

  47. Read MSD, Islam MS, Watson GW, Hancock FE. Surface structures and defect properties of pure and doped La2NiO4. J Mater Chem, 2001, 11: 2597–2602

    Article  CAS  Google Scholar 

  48. Monroux C, PhD Thesis, University of Bordeaux I (1996)

  49. Choisnet J, Abadzhieva N, Bassat JM, Rives V, Stefanov P, Minchev L, Klissurski D. XPS, TPD and TPR study of LaNiO3 and La2NiO4+δ catalysts for methanol oxidation. J Chem Faraday Trans, 1994, 90: 1987–1991

    Article  CAS  Google Scholar 

  50. Amow G, Whitfield PS, Davidson IJ, Hammond RP, Munnings CN, Skinner SJ. Structural and sintering characteristics of the La2Ni1−x Cox-O4+δ series. Ceramics International, 2004, 30:1635–1639

    Article  CAS  Google Scholar 

  51. Kilner JA, Shaw CKM. Mass transport in La2Ni1−x CoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics, 2002, 154: 523–527

    Article  Google Scholar 

  52. Munnings CN, Skinner SJ, Amow G, Whitfield PS, Davidson IJ. Oxygen transport in the La2Ni1−x CoxO4+δ system. Solid State Ionics, 2005, 176: 1895–1901

    Article  CAS  Google Scholar 

  53. Klenov DO, Donner W, Chen L, Jacobson AJ, Stemmer S. Composition control of radio-frequency magnetron sputter-deposited La0.5Sr0.5CoO3−σ thin films. J Mate Res, 2003, 18: 188–194

    Article  CAS  Google Scholar 

  54. Wang L, Merkle R, Maier J, Acartürk T, Starke U. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−σ films. Appl Phys Lett, 2009, 94: 1–3

    Google Scholar 

  55. Fan BA, Liu XL. A-deficit LSCF for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2009, 180: 973–977

    Article  CAS  Google Scholar 

  56. Kim YM, Bae J. Effect of A-site deficiency on mixed conducting properties of (Ba,Sr)(Co,Fe)O3−d electrodes for solid oxide fuel cells. ECS Transactions, 2008, 13: 137–143

    Article  CAS  Google Scholar 

  57. Idemoto Y, Fueki K, Sugyama M. Diffusion coefficients of oxygen in Nd2CuO4−δ . J Solid State Chem, 1991, 92: 489–495

    Article  CAS  Google Scholar 

  58. Adler SB, Lane JA, Steele BCH, Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc, 1996, 143: 3554–3564

    Article  CAS  Google Scholar 

  59. Li Q, Fan Y, Zhao H, Huo LH. Preparation and electrochemical properties of cathode materials La2−x SrxNiO4 for ITSOFC. Chin J Inorg Chem, 2006, 22: 2025–2030

    CAS  Google Scholar 

  60. Li Q, Fan Y, Zhao H, Sun LP, Huo LH. Preparation and electrochemical properties of a Sm2−x SrxNiO4 cathode for an IT-SOFC. J Power Sources, 2007, 167: 64–68

    Article  CAS  Google Scholar 

  61. Khandale AP, Bhoga SS. Combustion synthesized Nd2−x CexCuO4 (x=0–0.25) cathode materials for intermediate temperature solid oxide fuel cell applications. J Power Sources, 2010, 195: 7974–7982

    Article  CAS  Google Scholar 

  62. Hao JH, Li Q, Sun LP, Zhao H, Huo LH. Synthesis and performance of Nd2−x SrxCuO4 cathode materials for IT-SOFC. Chin J Inorg Chem, 2009, 25: 1818–1822

    CAS  Google Scholar 

  63. Murray Z, Liu M. Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors. Solid State Ionics, 1997, 93: 65–84

    Google Scholar 

  64. Li Q, Fan Y, Sun LP, Zhao H, Huo LH, Gao S, Grenier JC. Preparation and electrochemical properties of composite cathode La1.6Sr0.4-NiO4-Ce0.9Gd0.1O1.9 cathode for an IT-SOFC. Chin J Inorg Chem, 2007, 23: 300–304

    CAS  Google Scholar 

  65. Gong MG, Lu LH, Zhang H, Gao LR, Guo YB, Jin J. Properties and performance of La1.6Sr0.4NiO4+δ -Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Mater Res Bull, 2009, 44: 1630–1634

    Article  CAS  Google Scholar 

  66. Jin C, Liu J. Preparation of Ba1.2Sr0.8CoO4+δ K2NiF4-type structure oxide and cathodic behavioral of Ba1.2Sr0.8CoO4+δ -GDC composite cathode for intermediate temperature solid oxide fuel cells. J Alloys Compd, 2009, 474: 573–577

    Article  CAS  Google Scholar 

  67. Lee KT, Manthiram A. Electrochemical performance of Nd0.6Sr0.4-Co0.5Fe0.5O3−δ -Ag composite cathodes in intermediate temperature solid oxide fuel cells. J Power Sources, 2006, 160: 903–908

    Article  CAS  Google Scholar 

  68. Li Q, Li-Ping Sun, Huo LH, Zhao H, Grenier JC. Electrochemical performance of La1.6Sr0.4NiO4-Ag composite cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources, 2011, 196: 1712–1716

    Article  CAS  Google Scholar 

  69. Baqué L, Caneiro A, Moreno MS, Serquis A. High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochem Comm, 2008, 10: 1905–1908

    Article  Google Scholar 

  70. Bellino MG, Sacanell J, Lamas DG, Leyva AG, Walsöe de Reca NE. High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J Am Chem Soc, 2007, 129: 3066–3067

    Article  CAS  Google Scholar 

  71. Chauveau F, Grenier JC, Steenwinkel YZ, van Tuel MMA, van Berkel FPF, Bassat JM. High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J Power Sources, 2011, 196: 1872–1879

    Article  Google Scholar 

  72. Zhao F, Wang XF, Wang ZY, Peng RR, Xia CR. K2NiF4 type La1.2Sr0.8Co0.8Ni0.2O4+δ as the cathodes for solid oxide fuel cells. Solid State Ionics, 2008, 179: 1450–1453

    Article  CAS  Google Scholar 

  73. Lalanne C, Prosperi G, Bassat J.M, Mauvy F, Fourcade S, Stevens P, Zahid M, Diethelm S, Van Herle J, Grenier JC. Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J Power Sources, 2008, 185: 1218–1224

    Article  CAS  Google Scholar 

  74. Laberty C, Zhao F, Swider-Lyons KE., Virkar AV. High-performance solid oxide fuel cell cathodes with lanthanum-nickelate-based composites. Electrochem and Solid-State Letts, 2007, 10: B170–B174

    Article  CAS  Google Scholar 

  75. Chauveau F, Mougin J, Bassat JM, Mauvy F, Grenier JC. A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ . J Power Sources, 2010, 195: 744–749

    Article  CAS  Google Scholar 

  76. Taillades G, Dailly J, Taillades-Jacquin M, Mauvy F, Essouhmi A, Marrony M, Lalanne C, Fourcade S, Jones DJ, Grenier JC, Rozière J. Intermediate temperature anode-supported fuel cell based on BaCe0.9Y0.1O3 electrolyte with novel Pr2NiO4 cathode. Fuel Cells, 2010, 10: 166–173

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Li, Q. & Sun, L. Ln2MO4 cathode materials for solid oxide fuel cells. Sci. China Chem. 54, 898–910 (2011). https://doi.org/10.1007/s11426-011-4290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4290-2

Keywords

Navigation