Skip to main content
Log in

A multistep attachment process: Transformation of titanate nanotubes into nanoribbons

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of the conversion of titanate nanotubes into nanoribbons is of considerable interest. The details of the transformation processes involved when nanoribbons are produced from a P25 TiO2 powder precursor by alkaline hydrothermal treatment have been investigated systematically by transmission electron microscopy. A multistep attachment model is proposed for the growth at the early stage of coarsening. The treatment duration has a strong effect on the change in product morphology from hollow nanotubes into nanoribbons, since the nanotubes cannot retain their morphology in the strong alkaline solution for extended periods of time. Most of the nanotubes were etched and dissolved, providing the nutrients for subsequent nanoribbon growth. Some stable nanotubes grew spirally internally to form nanowires or became connected together to form rafts which acted as the grains for nanoribbon growth. With increasing hydrothermal time, a large number of nanotubes and other fragments became attached to the grains which began to grow larger and eventually formed the nanoribbons, in a process in which the stepped faces and kinked faces became fused and were eliminated while the flat faces were retained in the nanoribbon morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir, 1998, 14: 3160–3163

    Article  CAS  Google Scholar 

  2. Chen GHD, Zhang S, Peng LM. The structure of trititanate nanotubes. Acta Crystallographica Section B, 2002, 58: 587–593

    Article  CAS  Google Scholar 

  3. Yuan ZY, Colomer JF, Su BL. Titanium oxide nanoribbons. Chem Phys Lett, 2002, 363: 362–366

    Article  CAS  Google Scholar 

  4. Bavykin JMF, Walsh FC. Protonated titanates and TiO2 nanostruc-tured materials: Synthesis, properties, and applications. Adv Mater, 2006,18: 2807–2824

    Article  CAS  Google Scholar 

  5. Chen Q, Zhou WZ, Du GH, Peng LM. Trititanate nanotubes made via a single alkali treatment. Adv Mater, 2002, 14: 1208–1211

    Article  CAS  Google Scholar 

  6. Tsai CC, Teng H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater, 2005, 18: 367–373

    Article  Google Scholar 

  7. Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem Mater, 2005, 18: 547–553

    Article  Google Scholar 

  8. Wen BM, Liu CY, Liu Y. Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires. New J Chem, 2005, 29: 969–971

    Article  CAS  Google Scholar 

  9. Armstrong AR, Armstrong G, Canales J, Bruce PG. TiO2-B nanowires. Angew Chem-Int Edit, 2004, 43: 2286–2288

    Article  CAS  Google Scholar 

  10. Song SA, Liu ZW, He ZQ, Zhang AL, Chen JM. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ Sci Technol, 2010, 44: 3913–3918

    Article  CAS  Google Scholar 

  11. Xiao D. Template synthesis of N-F-codoped TiO2 nanotubes with high visible light activity. Sci China Ser B-Chem, 2009, 52: 2043–2046

    Article  Google Scholar 

  12. Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC. Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J Phys Chem B, 2005, 109: 19422–19427

    Article  CAS  Google Scholar 

  13. Xu JW, Ha CH, Cao B, Zhang WF. Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochimica Acta, 2007, 52: 8044–8047

    Article  CAS  Google Scholar 

  14. Adachi M, Okada I, Ngamsinlapasathian S, Murata Y, Yoshikawa S. Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes. Electrochemistry, 2002, 70: 449–452

    CAS  Google Scholar 

  15. Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry, 2002, 70: 418–420

    CAS  Google Scholar 

  16. Sheng J, Hu L, Xu S, Liu W, Mo Le, Tian H, Dai S. Characteristics of dye-sensitized solar cells based on the TiO2 nanotube/nanoparticle composite electrodes. J Mater Chem, 2011, 21: 5457–5463

    Article  CAS  Google Scholar 

  17. Riss A, Elser MJ, Bernardi J, Diwald O. Stability and photoelectronic properties of layered titanate nanostructures. J Amer Chem Soc, 2009, 131: 6198–6206

    Article  CAS  Google Scholar 

  18. Humar M, Arcon D, Umek P, Skarabot M, Musevic I, Bregar G. Mechanical properties of titania-derived nanoribbons. Nanotechnology, 2006, 17: 3869–3872

    Article  Google Scholar 

  19. Yuan ZY, Su BL. Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A, 2004, 241: 173–183

    Article  CAS  Google Scholar 

  20. Wei M, Konishi Y, Zhou H, Sugihara H, Arakawa H. A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chem Phys Lett, 2004, 400: 231–234

    Article  CAS  Google Scholar 

  21. Ma RZ, Fukuda K, Sasaki T, Osada M, Bando Y. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J Phys Chem B, 2005, 109: 6210–6214

    Article  CAS  Google Scholar 

  22. Yu HG, Yu JG, Cheng B, Zhou MH. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. J Solid State Chem, 2006, 179: 349–354

    Article  CAS  Google Scholar 

  23. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nano-tubes. J Mater Chem, 2004, 14: 3370–3377

    Article  CAS  Google Scholar 

  24. Elsanousi A, Elssfah EM, Zhang J, Lin J, Song HS, Tang C. Hydrothermal treatment duration effect on the transformation of titanate nanotubes into nanoribbons. J Phys Chem C, 2007, 111: 14353–14357

    Article  CAS  Google Scholar 

  25. Feng XJ, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett, 2008, 8: 3781–3786

    Article  CAS  Google Scholar 

  26. Papa AL, Millot N, Saviot L, Chassagnon R, Heintz O. Effect of reaction parameters on composition and morphology of titanate nanomaterials. J Phys Chem C, 2009, 113: 12682–12689

    Article  CAS  Google Scholar 

  27. Bavykin DV, Walsh FC. Elongated titanate nanostructures and their applications. Eur J Inorg Chem, 2009, 977-997

  28. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N. Formation mechanism of TiO2 nanotubes. Appl Phys Lett, 2003, 82: 281–283

    Article  CAS  Google Scholar 

  29. Pina CM, Becker U, Risthaus P, Bosbach D, Putnis A. Molecular-scale mechanisms of crystal growth in barite. Nature, 1998, 395: 483–486

    Article  CAS  Google Scholar 

  30. Koutsopoulos S. Kinetic study on the crystal growth of hydroxyapatite. Langmuir, 2001, 17: 8092–8097

    Article  CAS  Google Scholar 

  31. Cahn JW, Hoffman DW. Vector thermodynamics for anisotropic surfaces curved and faceted surfaces. Acta Metallurgica, 1974, 22: 1205–1214

    Article  CAS  Google Scholar 

  32. Donnay JDH, Harker D. A new law of crystal morphology extending the law of bravais. Amer Miner, 1937, 22: 446–467

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SongYuan Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, J., Hu, L., Mo, L. et al. A multistep attachment process: Transformation of titanate nanotubes into nanoribbons. Sci. China Chem. 55, 368–372 (2012). https://doi.org/10.1007/s11426-011-4362-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4362-3

Keywords

Navigation