Skip to main content
Log in

The effect of hydrogen bond acceptor properties of ionic liquids on their cellulose solubility

  • Articles
  • Special Issue · Ionic Liquid and Green Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is nowadays well-known that ionic liquids can dissolve cellulose. However, little systematic data has been published that shed light onto the influence of the ionic liquid structure on the dissolution of cellulose. We have conducted 1H NMR spectroscopy of ethanol in a large number of ionic liquids, and found an excellent correlation of the data obtained with the hydrogen acceptor properties (β-values). With this tool in hand, it is possible to distinguish between cellulose-dissolving and non-dissolving ionic liquids. A modulating effect of both, the anion of the non-dissolving ionic liquid and its cation was found in solubility studies with binary ionic liquid mixtures. The study was extended to other non-dissolving liquids, namely water and dimethylsulfoxide, and the effect of the cation was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc, 2002, 124: 4974–4975

    Article  CAS  Google Scholar 

  2. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromol, 2007, 8: 2629–2647

    Article  Google Scholar 

  3. Graenacher C. Cellulose solution. US Patent 1943176, 09-01-1934

  4. Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromol, 2006, 7: 3295–3297

    Article  CAS  Google Scholar 

  5. Kohler S, Liebert T, Schobitz M, Schaller J, Meister F, Gunther W, Heinze T. Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rap Commun, 2007, 28: 2311–2317

    Article  Google Scholar 

  6. Fukaya Y, Hayashi K, Wada M, Ohno H. Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem, 2008, 10: 44–46

    Article  CAS  Google Scholar 

  7. Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology. Chem Lett, 2009, 38: 2–7

    Article  CAS  Google Scholar 

  8. Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol, 2004, 5: 266–268

    Article  CAS  Google Scholar 

  9. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS. Dissolution of wood in ionic liquids. J Agricult Food Chem, 2007, 55: 9142–9148

    Article  Google Scholar 

  10. Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem, 2006, 8: 301–306

    Article  CAS  Google Scholar 

  11. Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci, 2005, 5: 520–525

    Article  CAS  Google Scholar 

  12. Moulthrop J. S, Swatloski RP, Moyna G, Rogers RD. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid soltuions. Chem Commun, 2005, 1557–1557

  13. Remsing RC, Swatloski RP, Rogers RD, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A C-13 and Cl-35/37 NMR relaxation study on model systems. Chem Commun, 2006, 1271–1273

  14. Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G. Solvation of carbohydrates in N,N′-dialkylimidazolium ionic liquids: A multinuclear NMR spectroscopy study. J Phys Chem B, 2008, 112: 11071–11078

    Article  CAS  Google Scholar 

  15. Youngs TGA, Holbrey JD, Deetlefs M, Nieuwenhuyzen M, Gomes MFC, Hardacre C. A molecular dynamics study of glucose solvation in the ionic liquid 1,3-dimethylimidazolium chloride. ChemPhysChem, 2006, 7: 2279–2281

    Article  CAS  Google Scholar 

  16. Youngs TGA, Hardacre C, Holbrey JD. Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: A simulation study. J Phys Chem B, 2007, 111: 13765–13774

    Article  CAS  Google Scholar 

  17. Novoselov NP, Saschina ES, Petrenko VE, Zarborski M. Study of dissolution of cellulose in ionic liquids by computer modeling. Fibre Chem, 2007, 39: 153–158

    Article  CAS  Google Scholar 

  18. Zhang H, Wu J, Zhang J, He JS. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful non-derivatizing solvent for cellulose. Macromol, 2005, 38: 8272–8277

    Article  CAS  Google Scholar 

  19. Michels C, Kosan B. Contribution to the dissolution state of cellulose and cellulose derivatives. Lenz Ber, 2005, 84: 62–70

    CAS  Google Scholar 

  20. Sellin M, Ondruschka B, Stark A. Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In: Liebert T, Heinze Th, Edgar K, Eds. Cellulose solvents: For analysis, shaping and chemical modification, Washington DC: ACS Symp. Series, 2010, 1033: 121–135

    Chapter  Google Scholar 

  21. Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun, 1992, 965–967

  22. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature moltensalts. Inorg Chem, 1996, 35: 1168–1178

    Article  Google Scholar 

  23. Stark A, Behrend P, Braun O, Muller A, Ranke J, Ondruschka B, Jastorff B. Progress in evaluation of risk potential of ionic liquids — basis for an eco-design of sustainable products. Green Chem, 2008, 10: 1152–1161

    Article  CAS  Google Scholar 

  24. Torrie BH, Weng SX, Powell BM. Structure of the α-phase of solid methanol. Mol Phys,1989, 67: 575–581

    Article  CAS  Google Scholar 

  25. Arce A, Rodil E, Soto A. Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, [Omim][BF4], ionic liquid with different alcohols. J Sol Chem, 2006, 35: 63–67

    Article  CAS  Google Scholar 

  26. Gomez E, Gonzalez B, Calvar N, Tojo E, Dominguez A. Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J Chem Eng Data, 2006, 51: 2096–2102

    Article  CAS  Google Scholar 

  27. Hoffmann MM, Conradi MS. Are there hydrogen bonds in supercritical methanol and ethanol? J Phys Chem B, 1998, 102: 263–271

    Article  CAS  Google Scholar 

  28. Lungwitz R, Spange S. A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J Chem, 2008, 32, 392–394

    Article  CAS  Google Scholar 

  29. Seddon KR, Stark A, Torres MJ. The influence of chloride, water and organic solvents on the physical properties of ionic liquids. Pure Appl Chem, 2000, 72: 2275–2287

    Article  CAS  Google Scholar 

  30. Stark A. Ionic liquid structure-induced effects on organic reactions. Top Curr Chem, 2009, 290: 41–81

    Article  CAS  Google Scholar 

  31. Cuissinat C, Navard P, Heinze T. Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr Polym, 2008, 72: 590–596

    Article  CAS  Google Scholar 

  32. Vitz J, Erdmenger T, Haensch C, Schubert US. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem, 2009, 11: 417–424

    Article  CAS  Google Scholar 

  33. Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology. Chem Lett, 2009, 38: 2–7

    Article  CAS  Google Scholar 

  34. Mele A, Tran CD, Lacerda SHD. The structure of a room-temperature ionic liquid with and without trace amounts of water: The role of C-H center dot center dot center dot O and C-H center dot center dot center dot F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew Chem Int Ed, 2003, 42: 4364–4366

    Article  CAS  Google Scholar 

  35. Erdmenger T, Haensch C, Hoogenboom R, Schubert US. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci, 2007, 7: 440–445

    Article  CAS  Google Scholar 

  36. Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids. Cellulose, 2008, 15: 59–66

    Article  CAS  Google Scholar 

  37. Bentivoglio G, Sixta H, Schottenberger H, Röder T, Fasching M. Ionische Flüssigkeiten als Lösungsmittel für Cellulose. 45. Chemiefasertagung, Dornbirn, Austria, 2006

  38. Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciliano T. Development of cation/anion “interaction” scales for ionic liquids through ESI-MS measurements. J Phys Chem B, 2007, 111: 598–604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret Stark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, A., Sellin, M., Ondruschka, B. et al. The effect of hydrogen bond acceptor properties of ionic liquids on their cellulose solubility. Sci. China Chem. 55, 1663–1670 (2012). https://doi.org/10.1007/s11426-012-4685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4685-8

Keywords

Navigation