Skip to main content
Log in

Solvent extraction of thorium(IV) using W/O microemulsion

  • Articles
  • Special Topic Nuclear Fuel Cycle Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The extraction of thorium(IV) was investigated using two types of W/O microemulsion, one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate (NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and an extractant bis(2-ethylhexyl)phosphoric acid (HDEHP) as the cosurfactant. The extraction capacities of the above two systems were higher than that of the HDEHP extraction system. High concentration of NaNO3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system, whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system. The mechanism in acidic condition was demonstrated by the log-log plot method. The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration, respectively. It was found that NaDEHP based W/O microemulsion broke up after extraction, while AOT-HDEHP W/O microemulsion was reserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang JZ, Wang XY, Zhou WJ, Gao HC, Wu JG. Extraction of gold from alkaline cyanide solution by the tetradecyldimethylbenzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism. Phys Chem Chem Phys, 2002, 4(18): 4489–4494

    Article  CAS  Google Scholar 

  2. Chen QD, Shen XH, Gao HC. Radiolytic syntheses of nanoparticles in supramolecular assemblies. Adv Colloid Interface Sci, 2010, 159(1): 32–44

    Article  CAS  Google Scholar 

  3. Tani H, Kamidate T, Watanabe H. Micelle-mediated extraction. J Chromatogr A, 1997, 780(1–2): 229–241

    CAS  Google Scholar 

  4. Hebrant M. Metal ion extraction in microheterogeneous systems. Coord Chem Rev, 2009, 253(17–18): 2186–2192

    Article  CAS  Google Scholar 

  5. Wu JG, Gao HC, Chen D, Xu GX. Microemulsion formation in some extractants and its effects on extraction mechanism. Sci China Ser A-Math, 1980, 12: 1533–1544

    Google Scholar 

  6. Osseoasare K. Aggregation, reversed micelles, and microemulsions in liquid-liquid extraction: the tri-normal-butyl phosphate-diluent-water-electrolyte system. Adv Colloid Interface Sci, 1991, 37(1–2): 123–173

    Article  CAS  Google Scholar 

  7. Chiarizia R, Nash KL, Jensen MP, Thiyagarajan P, Littrell KC. Application of the Baxter model for hard spheres with surface adhesion to SANS data for the U(VI)-HNO3, TBP-n-dodecane system. Langmuir, 2003, 19(23): 9592–9599

    Article  CAS  Google Scholar 

  8. Gao HC, Shen XH, Wu J. The study of extraction mechanism with amine. Chem J Chinese U, 1994, 15(10): 4525–4528

    Google Scholar 

  9. Jensen MP, Yaita T, Chiarizia R. Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyldiglycolamide. Langmuir, 2007, 23(9): 4765–4774

    Article  CAS  Google Scholar 

  10. Shen XH, Gao HC, Wang XY. What makes the solubilization of water in reversed micelles exothermic or endothermic? A titration calorimetry investigation. Phys Chem Chem Phys, 1999, 1(3): 463–469

    Article  CAS  Google Scholar 

  11. Wang WQ, Liu F, Shen XH. Application of the formation model of reversed micelles and W/O microemulsions in the liquid-liquid extraction of uranium. Uran Min Metall, 1999, 13(3): 238–244

    Google Scholar 

  12. Jiang JZ, Li WH, Gao HC, Wu JG. Extraction of inorganic acids with neutral phosphorus extractants based on a reverse micelle/microe-mulsion mechanism. J Colloid Interface Sci, 2003, 268(1): 208–214

    Article  CAS  Google Scholar 

  13. Vijayalakshmi CS, Gulari E. An improved model for the extraction of multivalent metals in winsor-ii microemulsion systems. Sep Sci Technol, 1991, 26(2): 291–299

    Article  CAS  Google Scholar 

  14. Naganawa H, Suzuki H, Tachimori S. Cooperative effect of carbamoylmethylene phosphine oxide on the extraction of lanthanides(III) to water-in-oil microemulsion from concentrated nitric acid medium. Phys Chem Chem Phys, 2000, 2(14): 3247–3253

    Article  CAS  Google Scholar 

  15. Naganawa H, Suzuki H, Yanase N, Nagano T, Noro J. Reversed-micellar extraction of strontium(II) from model solutions of seawater. Anal Sci, 2011, 27(3): 321–324

    Article  CAS  Google Scholar 

  16. Zeng S, Yang YZ, Zhu T, Han J, Luo CH. Uranium(VI) extraction by Winsor II microemulsion systems using trialkyl phosphine oxide. J Radioanal Nucl Chem, 2005, 265(3): 419–421

    Article  Google Scholar 

  17. Kubota F, Shinohara K, Shimojo K, Oshima T, Goto M, Furusaki S, Hano T. Extraction of rare earth metals by calix[4]arene solubilized in AOT reversed micellar solution. Sep Purif Technol, 2001, 24(1–2): 93–100

    Article  CAS  Google Scholar 

  18. Bose R, Murty DSR, Chakrapani G. Extraction of thorium(IV) as perchlorate and chloroacetate complexes with 1-phenyl-2,3-dimethyl-5-pyrazolone (antipyrine). J Radioanal Nucl Chem, 2005, 265(1): 115–122

    Article  CAS  Google Scholar 

  19. Liu JJ, Wang WW, Li DQ. Interfacial behavior of primary amine N1923 and the kinetics of thorium(IV) extraction in sulfate media. Colloid Surf A-Physicochem Eng Asp, 2007, 311(1–3): 124–130

    Article  CAS  Google Scholar 

  20. Jain VK, Pillai SG, Pandya RA, Agrawal YK, Shrivastav PS. Selective extraction, preconcentration and transport studies of thorium(IV) using octa-functionalized calix[4]resorcinarene-hydroxamic acid. Anal Sci, 2005, 21(2): 129–135

    Article  Google Scholar 

  21. Agrawal YK, Vora SB. Selective extraction and separation of thorium from monazite using N-phenylbenzo-18-crown-6-hydroxamic acid. Microchim Acta, 2003, 142(4): 255–261

    Article  CAS  Google Scholar 

  22. Partridg JA, Jensen RC. Purification of di-(2-ethylhexyl)phosphoric acid by precipitation of copper(II) di-(2-ethylhexyl)phosphate. J Inorg Nucl Chem, 1969, 31(8): 2587–2589

    Article  Google Scholar 

  23. Li Q, Weng SF, Wu JG, Zhou NF. Comparative study on structure of solubilized water in reversed micelles. 1. FT-IR spectroscopic evidence of water/AOT/n-heptane and water/NaDEHP/n-heptane systems. J Phys Chem B, 1998, 102(17): 3168–3174

    Article  CAS  Google Scholar 

  24. Wang DJ, Wu JG, Li Y, Weng SF, Wu PQ, Xu GX. Mechanism of extractant loss in solvent extraction process (I)—Transfer of saponified D2EHPA from organic phase to aqueous phase and its aggregation behaviour. Sci China Ser B-Chem, 1995, (11): 1281–1287

    Google Scholar 

  25. Shen YH, Wang DJ, Wu JG, Zhou WJ, Shi N. The gel phase formation in organic phase and FTIR spectra. Chin Sci Bull, 1997, 42(1): 37–41

    Article  Google Scholar 

  26. Yao SX, Wang DJ, Weng SF, Wu JW, FTIR Characterization of extracted organic phase in saponified organophosphoric acid system containing lanthanide. Chem J Chinese U, 1995, 11: 1664–1668

    Google Scholar 

  27. Li Q, Li T, Wu JG. Comparative study on the structure of reverse micelles. 2. FT-IR, 1H NMR, and electrical conductance of H2O/AOT/NaDEHP/n-heptane systems. J Phys Chem B, 2000, 104(38): 9011–9016

    Article  CAS  Google Scholar 

  28. Li, Q, Li T, Wu JG, Zhou NF. Comparative study on the structure of water in reverse micelles stabilized with sodium bis(2-ethylhexyl) sulfosuccinate or sodium bis(2-ethylhexyl) phosphate in n-heptane. J Colloid Interface Sci, 2000, 229(1): 298–302

    Article  CAS  Google Scholar 

  29. Neuman RD, Zhou NF, Wu JG, Jones MA, Gaonkar AG, Park SJ, Agrawal ML. General-model for aggregation of metal-extractant complexes in acidic organophosphorus solvent-extraction systems. Sep Sci Technol, 1990, 25(13–15): 1655–1674

    Article  CAS  Google Scholar 

  30. Yu ZJ, Zhou NF, Neuman RD. The role of water in the formation of reversed micelles — an antimicellization agent. Langmuir, 1992, 8(8): 1885–1888

    Article  CAS  Google Scholar 

  31. Yu ZJ, Neuman RD. Giant rodlike reversed micelles formed by sodium bis(2-ethylhexyl) phosphate in n-heptane. Langmuir, 1994, 10(8): 2553–2558

    Article  CAS  Google Scholar 

  32. Yu ZJ, Neuman RD. Giant rodlike reversed micelles. J Am Chem Soc, 1994, 116(9): 4075–4076

    Article  CAS  Google Scholar 

  33. Zhou NF, Wu JG, Yu ZJ, Neuman RD, Wang DJ, Xu GX. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid). Sci China Ser B-Chem, 1997, 40(1): 61–71

    Article  CAS  Google Scholar 

  34. Neuman RD, Ibrahim TH. Novel structural model of reversed micelles: The open water-channel model. Langmuir, 1999, 15(1): 10–12

    Article  CAS  Google Scholar 

  35. Ibrahim TH, Neuman RD. Molecular modeling study of the aggregation behavior of nickel(II), cobalt(II), lead(II) and zinc(II) bis(2-ethylhexyl) phosphate complexes. J. Colloid Interface Sci, 2006, 294(2): 321–327

    Article  CAS  Google Scholar 

  36. Steytler DC, Jenta TR, Robinson BH, Eastoe J, Heenan RK. Structure of reversed micelles formed by metal salts of bis(ethylhexyl) phosphoric acid. Langmuir, 1996, 12(6): 1483–1489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingHai Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Shen, X., Chen, Q. et al. Solvent extraction of thorium(IV) using W/O microemulsion. Sci. China Chem. 55, 1712–1718 (2012). https://doi.org/10.1007/s11426-012-4686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4686-7

Keywords

Navigation