Skip to main content
Log in

Bio-inspired special wetting surfaces via self-assembly

  • Reviews
  • Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, under the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy D. 125. Science, 2005, 309: 19–19

    Article  CAS  Google Scholar 

  2. Kennedy D, Norman C. What don’t we know? Introduction. Science, 2005, 309: 75–75

    Article  CAS  Google Scholar 

  3. Service RF. How far can we push chemical self-assembly. Science, 2005, 309: 95–95

    Article  CAS  Google Scholar 

  4. Wang C, Wang Z, Zhang X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc Chem Res, 2012, 45: 608–618

    Article  CAS  Google Scholar 

  5. Chakrabarty R, Mukherjee PS, Stang PJ. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chem Rev, 2011, 111: 6810–6918

    Article  CAS  Google Scholar 

  6. Vanmaekelbergh D. Self-assembly of colloidal nanocrystals as route to novel classes of nanostructured materials. Nano Today, 2011, 6: 419–437

    Article  CAS  Google Scholar 

  7. Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog Mater Sci, 2009, 54: 137–178

    Article  CAS  Google Scholar 

  8. Liu KS, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chem Soc Rev, 2010, 39: 3240–3255

    Article  CAS  Google Scholar 

  9. Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today, 2011, 6: 155–175

    Article  CAS  Google Scholar 

  10. Zhang X, Shi F, Niu J, Jiang YG, Wang ZQ. Superhydrophobic surfaces: From structural control to functional application. J Mater Chem, 2008, 18: 621–633

    Article  CAS  Google Scholar 

  11. Liu KS, Jiang L. Metallic surfaces with special wettability. Nanoscale, 2011, 3: 825–838

    Article  CAS  Google Scholar 

  12. Yao X, Song YL, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater, 2011, 23: 719–734

    Article  CAS  Google Scholar 

  13. Liu K, Jiang L. Bio-inspired self-cleaning surfaces. Annu Rev Mater Res, 2012, 42: 231–263

    Article  CAS  Google Scholar 

  14. Sun TL, Qing GY. Biomimetic smart interface materials for biological applications. Adv Mater, 2011, 23: H57–H77

    Article  CAS  Google Scholar 

  15. Sun TL, Qing GY, Su BL, Jiang L. Functional biointerface materials inspired from nature. Chem Soc Rev, 2011, 40: 2909–2921

    Article  CAS  Google Scholar 

  16. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14: 1857–1860

    Article  CAS  Google Scholar 

  17. Liu K, Zhai J, Jiang L. Fabrication and characterization of superhydrophobic Sb2O3 films. Nanotechnology, 2008, 19: 165604

    Article  Google Scholar 

  18. Zhu Y, Hu D, Wan MX, Jiang L, Wei Y. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Adv Mater, 2007, 19: 2092–2096

    Article  CAS  Google Scholar 

  19. Zhao N, Shi F, Wang ZQ, Zhang X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir, 2005, 21: 4713–4716

    Article  CAS  Google Scholar 

  20. Srinivasan S, Praveen VK, Philip R, Ajayaghosh A. Bioinspired superhydrophobic coatings of carbon nanotubes and linear pi systems based on the “bottom-up” self-assembly approach. Angew Chem Int Ed, 2008, 47: 5750–5754

    CAS  Google Scholar 

  21. Lin JJ, Chu CC, Chiang ML, Tsai WC. Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect. Adv Mater, 2006, 18: 3248–3252

    Article  CAS  Google Scholar 

  22. Yin J, Yan J, He M, Song YL, Xu XG, Wu K, Pei JA. Solution-processable flower-shaped hierarchical structures: Self-assembly, formation, and state transition of biomimetic superhydrophobic surfaces. Chem Eur J, 2010, 16: 7309–7318

    CAS  Google Scholar 

  23. Du X, He JH. A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings. Acs Appl Mater Inter, 2011, 3: 1269–1276

    Article  CAS  Google Scholar 

  24. Gong MG, Xu XL, Yang Z, Liu YY, Lv HF, Lv L. A reticulate superhydrophobic self-assembly structure prepared by ZnO nanowires. Nanotechnology, 2009, 20: 165602

    Article  Google Scholar 

  25. Wang GG, Zhu LQ, Liu HC, Li WP. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water. Langmuir, 2011, 27: 12275–12279

    Article  CAS  Google Scholar 

  26. Liu K, Li Z, Wang W, Jiang L. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces. Appl Phys Lett, 2011, 99: 261905

    Article  Google Scholar 

  27. Liu K, Zhang M, Zhai J, Wang J, Jiang L. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl Phys Lett, 2008, 92: 183103

    Article  Google Scholar 

  28. Coffinier Y, Janel S, Addad A, Blossey R, Gengembre L, Payen E, Boukherroub R. Preparation of superhydrophobic silicon oxide nanowire surfaces. Langmuir, 2007, 23: 1608–1611

    Article  CAS  Google Scholar 

  29. Liao KS, Wan A, Batteas JD, Bergbreiter DE. Superhydrophobic surfaces formed using layer-by-layer self-assembly with aminated multiwall carbon nanotubes. Langmuir, 2008, 24: 4245–4253

    Article  CAS  Google Scholar 

  30. Tuberquia JC, Nizamidin N, Harl RR, Albert J, Hunter J, Rogers BR, Jennings GK. Surface-initiated polymerization of superhydrophobic polymethylene. J Am Chem Soc, 2010, 132: 5725–5734

    Article  CAS  Google Scholar 

  31. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ. Adhesive force of a single gecko foot-hair. Nature, 2000, 405: 681–685

    Article  CAS  Google Scholar 

  32. Autumn K, Sitti M, Liang YCA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ. Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA, 2002, 99: 12252–12256

    Article  CAS  Google Scholar 

  33. Liu K, Du J, Wu J, Jiang L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale, 2012, 4: 768–772

    Article  CAS  Google Scholar 

  34. Feng L, Zhang YA, Xi JM, Zhu Y, Wang N, Xia F, Jiang L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008, 24: 4114–4119

    Article  CAS  Google Scholar 

  35. Qiu YC, Liu KS, Jiang L. Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials. Sci China Chem, 2011, 41: 403–408

    Google Scholar 

  36. Song XY, Zhai J, Wang YL, Jiang L. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties. J Phys Chem B, 2005, 109: 4048–4052

    Article  CAS  Google Scholar 

  37. Lai YK, Gao XF, Zhuang HF, Huang JY, Lin CJ, Jiang L. Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv Mater, 2009, 21: 3799–3803

    Article  CAS  Google Scholar 

  38. Li JA, Liu XH, Ye YP, Zhou HD, Chen JM. Fabrication of superhydrophobic CuO surfaces with tunable water adhesion. J Phys Chem C, 2011, 115: 4726–4729

    Article  CAS  Google Scholar 

  39. Kim TI, Tahk D, Lee HH. Wettability-controllable super water- and moderately oil-repellent surface fabricated by wet chemical etching. Langmuir, 2009, 25: 6576–6579

    Article  CAS  Google Scholar 

  40. Zhao K, Liu KS, Li JF, Wang WH, Jiang L. Superamphiphobic CaLi-based bulk metallic glasses. Scr Mater, 2009, 60: 225–227

    Article  CAS  Google Scholar 

  41. Xu XH, Zhang ZZ, Guo F, Yang J, Zhu XT, Zhou XY, Xue QJ. Superamphiphobic self-assembled monolayer of thiol on the structured Zn surface. Colloids Surf A, 2012, 396: 90–95

    Article  CAS  Google Scholar 

  42. Kumar RTR, Mogensen KB, Boggild P. Simple approach to superamphiphobic overhanging silicon nanostructures. J Phys Chem C, 2010, 114: 2936–2940

    Article  CAS  Google Scholar 

  43. Cao L, Gao D. Transparent superhydrophobic and highly oleophobic coatings. Farady Discuss, 2010, 146: 57–65

    Article  CAS  Google Scholar 

  44. Deng X, Mammen L, Butt HJ, Vollmer D. Candle soot as a template for a transparent robust superamphiphobic coating. Science, 2012, 335: 67–70

    Article  CAS  Google Scholar 

  45. Mendes PM. Stimuli-responsive surfaces for bio-applications. Chem Soc Rev, 2008, 37: 2512–2529

    Article  CAS  Google Scholar 

  46. Zhang JL, Han YC. Active and responsive polymer surfaces. Chem Soc Rev, 2010, 39: 676–693

    Article  CAS  Google Scholar 

  47. Wang ST, Song YL, Jiang L. Photoresponsive surfaces with controllable wettability. J Photoch Photobio C, 2007, 8: 18–29

    Article  CAS  Google Scholar 

  48. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Adv Mater, 2008, 20: 2842–2858

    Article  CAS  Google Scholar 

  49. Xin BW, Hao JC. Reversibly switchable wettability. Chem Soc Rev, 2010, 39: 769–782

    Article  CAS  Google Scholar 

  50. Zhang MX, Qing GY, Sun TL. Chiral biointerface materials. Chem Soc Rev, 2012, 41: 1972–1984

    Article  CAS  Google Scholar 

  51. Qing GY, Wang X, Fuchs H, Sun TL. Nucleotide-responsive wettability on a smart polymer surface. J Am Chem Soc, 2009, 131: 8370–8371

    Article  CAS  Google Scholar 

  52. Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Zhu DB. Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed, 2004, 43: 357–360

    Article  CAS  Google Scholar 

  53. Jiang WH, Wang GJ, He YN, Wang XG, An YL, Song YL, Jiang L. Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. Chem Commun, 2005: 3550–3552

  54. Ge HL, Wang GJ, He YN, Wang XG, Song YL, Jiang L, Zhua DB. Photoswitched wettability on inverse opal modified by a self- assembled azobenzene monolayer. Chemphyschem, 2006, 7: 575–578

    Article  CAS  Google Scholar 

  55. Lim HS, Lee WH, Lee SG, Lee D, Jeon S, Cho K. Effect of nanostructure on the surface dipole moment of photoreversibly tunable superhydrophobic surfaces. Chem Commun, 2010, 46: 4336–4338

    Article  CAS  Google Scholar 

  56. Feng XJ, Feng L, Jin MH, Zhai J, Jiang L, Zhu DB. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc, 2004, 126: 62–63

    Article  CAS  Google Scholar 

  57. Yan B, Tao JG, Pang C, Zheng Z, Shen ZX, Huan CHA, Yu T. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film. Langmuir, 2008, 24: 10569–10571

    Article  CAS  Google Scholar 

  58. Zhu WQ, Feng XJ, Feng L, Jiang L. UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chem Commun, 2006: 2753–2755

  59. Feng XJ, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed, 2005, 44: 5115–5118

    Article  CAS  Google Scholar 

  60. Lim HS, Kwak D, Lee DY, Lee SG, Cho K. UV-Driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J Am Chem Soc, 2007, 129: 4128–4129

    Article  CAS  Google Scholar 

  61. Wang ST, Feng XJ, Yao JN, Jiang L. Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed, 2006, 45: 1264–1267

    Article  CAS  Google Scholar 

  62. Kwak G, Lee M, Yong K. Chemically modified superhydrophobic WOx nanowire arrays and UV photopatterning. Langmuir, 2010, 26: 9964–9967

    Article  CAS  Google Scholar 

  63. Jiang YG, Wang ZQ, X Y, Shi F, Xu HP, Zhang X, Smet M, Dehaen W. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: Toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir, 2005, 21: 1986–1990

    Article  CAS  Google Scholar 

  64. Chen XX, Gao J, Song B, Smet M, Zhang X. Stimuli-responsive wettability of nonplanar substrates: pH-controlled floatation and supporting force. Langmuir, 2010, 26: 104–108

    Article  Google Scholar 

  65. Qing GY, Sun TL. Chirality-triggered wettability switching on a smart polymer surface. Adv Mater, 2011, 23: 1615–1620

    Article  CAS  Google Scholar 

  66. Xia F, Feng L, Wang ST, Sun TL, Song WL, Jiang WH, Jiang L. Dual-responsive surfaces that switch superhydrophilicity and superhydrophobicity. Adv Mater, 2006, 18: 432–436

    Article  CAS  Google Scholar 

  67. Xia F, Ge H, Hou Y, Sun TL, Chen L, Zhang GZ, Jiang L. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater, 2007, 19: 2520–2524

    Article  CAS  Google Scholar 

  68. Wang ST, Liu HJ, Liu DS, Ma XY, Fang XH, Jiang L. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed, 2007, 46: 3915–3917

    Article  CAS  Google Scholar 

  69. Li Y, Li L, Sun JG. Bioinspired self-healing superhydrophobic coatings. Angew Chem Int Ed, 2010, 49: 6129–6133

    Article  CAS  Google Scholar 

  70. Liu K, Jiang L. Multifunctional integration: From biological to bio-inspired materials. Acs Nano, 2011, 5: 6786–6790

    Article  CAS  Google Scholar 

  71. Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. Superwetting nanowire membranes for selective absorption. Nat Nanotechnol, 2008, 3: 332–336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to KeSong Liu or Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Yang, S., Li, Z. et al. Bio-inspired special wetting surfaces via self-assembly. Sci. China Chem. 55, 2327–2333 (2012). https://doi.org/10.1007/s11426-012-4707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4707-6

Kewywords

Navigation