Skip to main content
Log in

Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of Mo-doped ZnO photocatalysts with different Mo-dopant concentrations have been prepared by a grinding-calcination method. The structure of these photocatalysts was characterized by a variety of methods, including N2 physical adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, photoluminescence (PL) emission spectroscopy, and UV-vis diffuse reflectance spectroscopy (DRS). It was found that Mo6+ could enter into the crystal lattice of ZnO due to the radius of Mo6+ (0.065 nm) being smaller than that of Zn2+ (0.083 nm). XRD results indicated that Mo6+ suppressed the growth of ZnO crystals. The FT-IR spectroscopy results showed that the ZnO with 2 wt.% Mo-doping has a higher level of surface hydroxyl groups than pure ZnO. PL spectroscopy indicated that ZnO with 2 wt.% Mo-doping also exhibited the largest reduction in the intensity of the emission peak at 390 nm caused by the recombination of photogenerated hole-electron pairs. The activities of the Mo-doped ZnO photocatalysts were investigated in the photocatalytic degradation of acid orange II under UV light (λ = 365 nm) irradiation. It was found that ZnO with 2 wt.% Mo-doping showed much higher photocatalytic activity and stability than pure ZnO. The high photocatalytic performance of the Mo-doped ZnO can be attributed to a great improvement in the surface properties of ZnO, higher crystallinity and lower recombination rate of photogenerated hole-electron (e/h+) pairs. Moreover, the undoped Mo species may exist in the form of MoO3 and form MoO3/ZnO heterojunctions which further favors the separation of e/h+ pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang YQ, Li FF, Sun R, Xie ZX, Zheng LS. A simple solvothermal route towards the morphological control of ZnO and tuning of its optical and photocatalytic properties. Sci China Chem, 2011, 53(8): 1711–1717

    Article  Google Scholar 

  2. Yu CL, Yu JC. A simple way to prepare C-N-codoped TiO2 photocatalyst with visible-light activity. Catal Lett, 2009, 129(3–4): 462–470

    Article  CAS  Google Scholar 

  3. Bui TD, Kimura A, Shigeru I, Matsumura M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J Am Chem Soc, 2010, 132(24): 8453–8458

    Article  CAS  Google Scholar 

  4. Yu CL, Yu JC. Sonochemical fabrication, characterization and photocatalytic properties of Ag/ZnWO4 nanorod catalyst. Mater Sci Eng B, 2009, 164(1): 16–22

    Article  CAS  Google Scholar 

  5. Yu CL, Yu JM, Zhou WQ, Yang K. WO3 coupled P-TiO2 photocatalysts with mesoporous structure. Catal Lett, 2010, 140(3–4): 172–183

    Article  CAS  Google Scholar 

  6. Hu C, Peng TW, Hu XX, Nie YL, Zhou XF, Qu JH, He H. Plasmoninduced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. J Am Chem Soc, 2010, 132(2): 857–862

    Article  CAS  Google Scholar 

  7. Yu CL, Yu JC, Chan M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. J Solid State Chem, 2009, 182(5): 1061–1069

    Article  CAS  Google Scholar 

  8. Reynolds DC, Look DC, Jogai B, Hoelscher JE, Sherriff RE, Harris MT, Callahan MJ. Time-resolved photoluminescence lifetime measurements of the Γg5 and Γ6 free excitons in ZnO. J Appl Phys, 2000, 88(4): 2152–2153

    Article  CAS  Google Scholar 

  9. Baxter JB, Aydil ES. Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells, 2006, 90(5): 607–622

    Article  CAS  Google Scholar 

  10. Yuhas BD, Yang P. Nanowire-based all-oxide solar cells. J Am Chem Soc, 2009, 131(10): 3756–3761

    Article  CAS  Google Scholar 

  11. Yamazaki T, Wada S, Noma T, Suzuki T. Gas-sensing properties of ultrathin zinc oxide films. Sens Actuators B, 1993, 14(1–3): 594–595

    Article  CAS  Google Scholar 

  12. Chu D, Masuda Y, Ohji T, and Kato K. Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir, 2010, 26(4): 2811–2815

    Article  CAS  Google Scholar 

  13. Xu J, Chang YG, Zhang YY, Ma SY, Qu Y, Xu CT. Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites. Appl Surf Sci, 2008, 255(5): 1996–1999

    Article  CAS  Google Scholar 

  14. Wu JJ, Tseng CH. Photocatalytic properties of nc-Au/ZnO nanorod. Appl Catal B, 2006, 66(1–2): 51–57

    CAS  Google Scholar 

  15. Li D, Haneda H. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WO3-ZnO composite powders in gas-phase acetaldehyde decomposition. J Photochem Photobiol A, 2003, 160(3): 203–212

    Article  CAS  Google Scholar 

  16. Hsu CC, Wu NL. Synthesis and photocatalytic activity of ZnO/ZnO2 composite. J Photochem Photobiol A, 2005, 172(3): 269–274

    Article  CAS  Google Scholar 

  17. Li D, Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. J Photochem Photobiol A, 2003, 155(1–3): 171–178

    Article  CAS  Google Scholar 

  18. Chen LC, Tu YJ, Wang YS, Kan RS, Huang CM. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J Photochem Photobiol A, 2008, 199(2–3): 170–178

    Article  CAS  Google Scholar 

  19. Hong RY, Qian JZ, Cao JX. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol, 2006, 163(3): 160–168

    Article  CAS  Google Scholar 

  20. Hong RY, Chen LL, Li JH, Li HZ, Zheng Y, Ding J. Preparation and application of polystyrene-grafted ZnO nanoparticle. Polym Adv Technol, 2007, 18(11): 901–909

    Article  CAS  Google Scholar 

  21. Kislov N, Lahiri J, Verma H, Goswami DY, Stefanakos E, Batzill M. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO. Langmuir, 2009, 25(5): 3310–3315

    Article  CAS  Google Scholar 

  22. Shen YB, Zhou X, Xu M, Ding YC, Duan MY, Linghu RF, Zhu WJ. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440–3445

    CAS  Google Scholar 

  23. Yu CL, Yang K, Yu JC, Peng P, Cao FF, Li X, Zhou XC. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO. Acta Phys-Chim Sin, 2011, 27(2): 505–512

    CAS  Google Scholar 

  24. Sanatgar-Delshade E, Habibi-Yangjeh A, Khodadadi-Moghaddam M. Hydrothermal low-temperature preparation and characterization of ZnO nanoparticles supported on natural zeolite as a highly efficient photocatalyst. Monatsh Chem, 2011, 142(2): 119–129

    Article  CAS  Google Scholar 

  25. Roy S, Basu S. Improved zinc oxide film for gas sensor applications. Bull Mater Sci, 2002, 25(6): 513–515

    Article  CAS  Google Scholar 

  26. Jing LQ, Xu ZL, Sun XJ, Shang J, Cai WM. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci, 2001, 180(3–4): 308–314

    Article  CAS  Google Scholar 

  27. Hufschmidt D, Liu L, Seizer V, Bahnemann D. Photocatalytic water treatment: Fundamental knowledge required for its practical application. Water Sci Technol, 2004, 49(4): 135–140

    CAS  Google Scholar 

  28. Chen YP, Lu CL, Xu L, Ma Y, Hou WH, Zhu JJ. Single-crystalline orthorhombic molybdenum oxide nanobelts: Synthesis and photocatalytic properties. Cryst Eng Comm, 2010, 12(11): 3740–3747

    CAS  Google Scholar 

  29. Wang XH, Zhao DX, Liu YC, Zhang JY, Lu YM, Fan XW. The photoluminescence properties of ZnO whiskers. J Cryst Growth, 2004, 263(1–4): 316–319

    Article  CAS  Google Scholar 

  30. Stikant V, Clarke DR. On the optical band gap of zinc oxide. J Appl Phys, 1998, 83(10): 5447–5451

    Article  Google Scholar 

  31. Meng XQ, Zhao DX, Zhang JY, Shen DZ, Lu YM, Liu YC, Fan XW. Growth temperature controlled shape variety of ZnO nanowires. Chem Phys Lett, 2005, 407(1–3): 91–94

    Article  CAS  Google Scholar 

  32. Yu CL, Fan CF, Yu JM, Zhou WQ, Yang K. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV-light irradiation. Mater Res Bull, 2011, 46(1): 140–146

    Article  CAS  Google Scholar 

  33. Hirotaka N, Koichi K, Masashi T. Fabrication and photocatalytic activity of TiO2/MoO3 particulate films. J Oleo Sci, 2009, 58(4): 203–211

    Article  Google Scholar 

  34. Yukina T, Pailin N, Tetsu T. Energy storage TiO2-MoO3 photocatalysts. Electrochimica Acta, 2004, 49(12): 2025–2029

    Article  Google Scholar 

  35. Kim Y, Atherton SJ, Brigham E S, Mallouk TE. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J Phys Chem, 1993, 97: 11802–11810

    Article  CAS  Google Scholar 

  36. Dai G P, Yu JG, Liu G. Synthesis and enhanced visible-light photoelectron catalytic activity of p-n junction BiOI/TiO2 nanotube arrays. J Phys Chem C, 2011, 115: 7339–7346

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangLin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Yang, K., Shu, Q. et al. Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts. Sci. China Chem. 55, 1802–1810 (2012). https://doi.org/10.1007/s11426-012-4721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4721-8

Keywords

Navigation