Skip to main content
Log in

Adsorption of As(III) from aqueous solution based on porous magnetic/chitosan/ferric hydroxide microspheres prepared via electrospraying

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Porous chitosan(CS)/magnetic(Fe3O4)/ferric hydroxide(Fe(OH)3) microsphere as novel and low-cost adsorbents for the removal of As(III) have been synthesized via the electrospraying technology by a simple process of two steps. Characterization of the obtained adsorbents was studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The adsorption kinetics and equilibrium isotherms were investigated in batch experiments. The Langmuir, Freundlich isotherm and pseudo-second order kinetic models agree well with the experimental data. The adsorption of As(III) onto CS/Fe3O4/Fe(OH)3 microspheres occurred rapidly and reached adsorption equilibrium after about 45 min. The maximum adsorption capacity of CS/Fe3O4/Fe(OH)3 microspheres, calculated by the Langmuir isotherm model, was 8.47 mg g−1, which is higher than that of CS/Fe3O4/Fe(OH)3 prepared by the conventional method (4.72 mg g−1). The results showed that the microspheres had a high adsorption capacity for As(III) and a high separation efficiency due to their microporous structure and superparamagnetic characteristics. Present research may eventually lead to a simple and low cost method for fabricating microporous materials and application for removal of arsenic from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bang SB, Patel M, Lippincott L, Meng XG. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 2005, 60: 389–397

    Article  CAS  Google Scholar 

  2. Penna M, Meng XG, Korfiatis GP, Jing CY. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ Sci Technol, 2006, 40: 1257–1262

    Article  Google Scholar 

  3. Camacho LM, Gutierrez MT, Alarcon-Herrera ML, Deng SG. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. J Hazard Mater, 2011, 83: 211–225

    CAS  Google Scholar 

  4. WHO, Guidelines for drinking water quality, World Health Organization, Geneva, Switzerland, 1993

  5. Guan XH, Du JS, Meng XG, Sun YK, Sun B, Hu QH. Application of titanium dioxide in arsenic removal from water: A review. J Hazard Mater, 2012, 215–216: 1–16

    Article  Google Scholar 

  6. Elson CM, Bem EM, Ackman RG. Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture. Water Res, 1980, 14: 1307–1311

    Article  CAS  Google Scholar 

  7. Wan Ngah WS, Fatinathan S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosanalginate beads. Chem Eng J, 2008, 143: 62–72

    Article  Google Scholar 

  8. Gerente C, Andres Y, McKay G, Cloirec PL. Removal of As(V) onto chitosan. From sorption mechanism explanation to dynamic water treatment process. Chem Eng J, 2010, 158: 593–598

    Article  CAS  Google Scholar 

  9. Miller SM, Spaulding ML, Zimmerman JB. Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Res, 2011, 45: 5745–5754

    Article  CAS  Google Scholar 

  10. Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R. Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosancoated biosorbent. Water Res, 2008, 42: 633–642

    Article  CAS  Google Scholar 

  11. Gang DD, Deng BL, Lin LS. As(III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater, 2010, 182: 156–161

    Article  CAS  Google Scholar 

  12. Prevost MC, Nour SKF, Jekel MT, Gallagher PM, Blumenschein CD. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res, 2008, 42: 3371–3378

    Article  Google Scholar 

  13. Pierce ML, Moore CB. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res, 1982, 16: 1247–1253

    Article  CAS  Google Scholar 

  14. Zhang K, Dwivedi VN, Chi CY, Wu JS. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater, 2010, 182: 162–168

    Article  CAS  Google Scholar 

  15. Liu Z, Yi G, Zhang H, Ding J, Zhang Y and Xue J. Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chem Commun, 2008, 694–696

  16. Liu Z, Ding J, and Xue J. A new family of biocompatible and stable magnetic nanoparticles: silica cross-linked pluronic F127 micelles loaded with iron oxides. New J Chem, 2009, 33: 88–92

    Article  CAS  Google Scholar 

  17. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 2006, 314: 964–967

    Article  Google Scholar 

  18. Simeonidisa K, Gkinisa Th, Tresintsib S, Martinez-Boubetac C, Vourliasa G, Tsiaoussisa I, Stavropoulosb G, Mitrakasb M, Angelakerisa M. Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem Eng J, 2011, 168: 1008–1015

    Article  Google Scholar 

  19. Mayo J T, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin, V L. The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater, 2007, 8: 71–75

    Article  CAS  Google Scholar 

  20. Chen R, Zhi C, Yang H, Bando Y, Zhang Z, Sugiur N, Golberg D. Arsenic(V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interf Sci, 2011, 359: 261–268

    Article  CAS  Google Scholar 

  21. Tian Y, Wu M, Lin X, Huang P, Huang Y. Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater, 2011, 193: 10–16

    Article  CAS  Google Scholar 

  22. Savina IN, English, CJ, Whitby RLD, Zheng YS, Leistner A, Mikhalovsky SV, Cundy AB. High efficienct removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. J Hazard Mater, 2011, 192: 1002–1008

    Article  CAS  Google Scholar 

  23. Wu Y Q, Clark R L. Controllable porous polymer particles generated by electrospraying, J Colloid Interf Sci, 2007, 310: 529–535

    Article  CAS  Google Scholar 

  24. Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview. J Electrostatics, 2008, 66: 197–219

    Article  CAS  Google Scholar 

  25. Liu ZY, Bai HW, Sun DD. Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications. New J Chem, 2011, 35: 137–140

    Article  CAS  Google Scholar 

  26. Gang ZY, Yu SH, Dong PS, Qin HM. Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr(VI) in wastewater. J Hazard Mater, 2010, 182: 295–302

    Article  Google Scholar 

  27. Ngah WSW, Ghani SA, Kamari A, Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour Technol, 2005, 96: 443–451

    Article  Google Scholar 

  28. Wang LL, Jiang JS. Preparation of Fe3O4 spherical nanoporous particles facilitated by polyethylene glycol 4000. Nanoscale Res Lett, 2009, 4: 1439–1446

    Article  CAS  Google Scholar 

  29. Sing KSW, Everett DH, Haul RAW, Moscou L. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57, 603–619

    Article  CAS  Google Scholar 

  30. Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am Chem Soc, 1938, 60: 309–319

    Article  CAS  Google Scholar 

  31. Wang JH, Zheng SR, Shao Y, Liu JL. Amino-functionalized Fe3O4@ SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interf Sci, 2010, 349: 293–299

    Article  CAS  Google Scholar 

  32. Peng Z G, Hidajat K, Uddin M S. Adsorption of bovine serum albumin on nanosized magnetic particle. J Colloid Interf Sci, 2004, 271: 277–283

    Article  CAS  Google Scholar 

  33. Ho YS, McKay G. Comparative of chemisorption kinetics models applied to pollutant removal on various sorbents. J Environ Sci and Health. Part A, 1999, 34: 1179–1204

    Article  Google Scholar 

  34. Zheng Y, Wang WB, Huang DJ, Wang AQ. Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem Eng J, 2012, 191: 154–161

    Article  CAS  Google Scholar 

  35. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinium. J Am Chem Soc, 1918, 40: 1361–1403

    Article  CAS  Google Scholar 

  36. Freundlich H M F. Uber die adsorption in lösungen, Zeitschrift für Physikalische Chemie (Leipzig), 1906, 57A: 385–470

    Google Scholar 

  37. Vu D, Li ZY, Zhang HN, Wang W, Wang ZJ, Xu XR, Dong B. Adsorption of Cu(II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J Colloid Interf Sci, 2012, 367: 429–435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Li or Ce Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vu, D., Li, X. & Wang, C. Adsorption of As(III) from aqueous solution based on porous magnetic/chitosan/ferric hydroxide microspheres prepared via electrospraying. Sci. China Chem. 56, 678–684 (2013). https://doi.org/10.1007/s11426-012-4817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4817-1

Keywords

Navigation