Skip to main content
Log in

Carbon black supported ultra-high loading silver nanoparticle catalyst for electro-oxidation and determination of hydrazine

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon black supported ultra-high loading silver nanoparticle catalyst (Ag/CB) was prepared by a modified ethylene glycol reduction method, using ethylene glycol as the reducing agent and sodium hydroxide as the pH adjusting agent. The X-ray diffraction, thermogravimetry and scanning electron microscopy characterizations showed that the Ag nanoparticles crystallized with a face-centered cubic structure and were densely stacked on the CB surface without aggregation, despite such a small average size (ca. 10 nm) and an ultra-high loading mass (392 wt.%). The electrochemical evaluation based on cyclic voltammetry, chronoamperometry and polarization tests revealed that the ultra-high loading Ag/CB catalyst possessed a superior electrocatalytic activity for the oxidation of hydrazine, via a diffusion-limited process and a 4-electron transfer pathway. Moreover, the chronoamperometry response on an electrode modified with this ultra-high loading Ag/CB catalyst exhibited a promising application for determination of hydrazine, due to a broad linear calibration ranging from 50 to 800 μM, a high sensitivity of 0.03795 μA/μM and a low detection limit of 3.47 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, Miyazaki Y, Kobayashi T. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochem Commun, 2003, 5: 892–896

    Article  CAS  Google Scholar 

  2. Ensafi AA, Mirmomtaz E. Elecrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. J Electroanal Chem, 2005, 583: 176–183

    Article  CAS  Google Scholar 

  3. Christopher BM, Bank CE, Andrew OS, Timothy GJJ, Compton RG. The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst, 2006, 131: 106–111

    Article  Google Scholar 

  4. Malone HE, Anderson DMW. The determination of mixtures of hydrazine, monomethylhydrazine and 1,1-dimethylhydrazine. Anal Chim Acta, 1969, 48: 87–91

    Article  CAS  Google Scholar 

  5. Michlmayr M, Sawyer DT. Electrochemical oxidation of hydrazine and of the dimethylhydrazine in dimethylsulfoxide at a platinum electrode. J Electroanal Chem, 1969, 23: 375–385

    Article  CAS  Google Scholar 

  6. George M, Nagaraja KS, Balasubramanian N. Spectrophotometric determination of hydrazine. Talanta, 2008,75: 27–31

    Article  CAS  Google Scholar 

  7. Zare HR, Nasirizadeh N. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine. Electrochim Acta, 2007, 52: 4153–4160

    Article  CAS  Google Scholar 

  8. Geraldo D, Linares C, Chen YY, Ureta-Zañartu S, Zagal JH. Volcano correlations between formal potential and hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation. Electrochem Commun, 2002, 4: 182–187

    Article  CAS  Google Scholar 

  9. Zagal JH, Páez MA. Electro-oxidation of hydrazine on electrodes modified with vitamin B12. Electrochim Acta, 1997, 42: 3477–3481

    Article  CAS  Google Scholar 

  10. Peng QY, Guarr TF. Electro-oxidation of hydrazine at electrodes modified with polymeric cobalt phthlocyanine. Electrochim Acta, 1994, 39: 2629–2632

    Article  CAS  Google Scholar 

  11. Ozoemena KI. Anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) phthalocyanine-cobalt (II) tetraphenylporphyrin (CoPc-(CoTPP)4) supramolecular complex. Sensors, 2006, 6: 874–891

    Article  CAS  Google Scholar 

  12. Liu YC, Yu CC, Yang KH. Active catalysts of electrochemically prepared gold nanoparticles for the decomposition of aldehyde in alcohol solutions. Electrochem Commun, 2006, 8: 1163–1167

    Article  CAS  Google Scholar 

  13. Ji XB, Banks CE, Xi W, Wilkins SJ, Compton RG. Edge plane sites on highly ordered pyrolytic graphite as templates for making palladium nanowires via electrochemical decoration. J Phys Chem B, 2006, 110: 22306–22309

    Article  CAS  Google Scholar 

  14. Maleki N, Safavi A, Farjami E, Tajabadi F. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta, 2008, 611: 151–155

    Article  CAS  Google Scholar 

  15. Gao GY, Guo DJ, Wang C, Li HL. Electrocrystallized Ag nanoparticles on functional multi-walled carbon nanotube surfaces for hydrazine oxidation. Electrochem Commun, 2007, 9: 1582–1586

    Article  CAS  Google Scholar 

  16. Yang GW, Gao GY, Wang C, Xu CL, Li HL. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 2008, 46: 747–752

    Article  CAS  Google Scholar 

  17. Zamudio A, Terrones M. Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. Small, 2006, 2: 346–350

    Article  CAS  Google Scholar 

  18. Guo DJ, Li HL. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 2005, 43: 1259–1264

    Article  CAS  Google Scholar 

  19. Tanaka N, Nishikiori H, Kubota S, Enda M, Fujii T. Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon, 2009, 47: 2752–2754

    Article  CAS  Google Scholar 

  20. Chen LM, Ma D, Pietruszka B, Bao XH. Carbon-supported silver catalysts for CO selective oxidation in excess hydrogen. J Nat Gas Chem, 2006, 15: 181–190

    Article  Google Scholar 

  21. Yang J, Deivaraj TC, Too HP, Lee JY. Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir, 2004, 20: 4241–4245

    Article  CAS  Google Scholar 

  22. Wang F, Arai S, Park KC, Takeuchi K, Kim YJ, Endo M. Synthesis of carbon nanotube-supported nickel-phosphorus nanoparticles by an electroless process. Carbon, 2006, 44: 1307–1310

    Article  CAS  Google Scholar 

  23. Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS. Decoration of activated carbon nanotubes with copper and nickel. Carbon, 2000, 38: 363–372

    Article  CAS  Google Scholar 

  24. Zhu H, Yang D, Zhang H. Hydrothermal synthesis characterization of properties of SnS nanoflowers. Mater Lett, 2006, 60: 2686–2689

    Article  CAS  Google Scholar 

  25. You DJ, Kwon K, Joo SH, Kim JH, Kim JM, Pak C, Chang H. Carbon-supported ultra-high loading Pt nanoparticle catalyst by controlled overgrowth of Pt: Improvement of Pt utilization leads to enhanced direct methanol fuel cell performance. Int J Hydrogen Energy, 2012, 37: 6880–6885

    Article  CAS  Google Scholar 

  26. Tan C, Wang F, Liu J, Zhao Y, Wang J, Zhang L, Park KC, Endo M. An easy route to prepare carbon black-silver hybrid catalysts for electro-catalytic oxidation of hydrazine. Mater Lett, 2009, 63: 969–971

    Article  CAS  Google Scholar 

  27. Guo DJ, Li HL. High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes. J Colloid Interface Sci, 2005, 286: 274–279

    Article  CAS  Google Scholar 

  28. Wang Y, Wan Y, Zhang D. Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem Commun, 2010, 12: 187–190

    Article  CAS  Google Scholar 

  29. Athanasiou-Malaki E, Koupparis MA. Kinetic study of the determination of hydrazines, isoniazid and sodium azide by monitoring their reactions with 1-fluoro-2,4-dinitrobenzene, by means of a fluoride-selective electrode. Talanta, 1989, 36: 431–436

    Article  CAS  Google Scholar 

  30. Niu L, You T, Gui JY, Wang E, Dong S. Electrocatalytic oxidation of hydrazines at a 4-pyridylhydroquinone self-assembled platinum electrode and its application to amperometric detection in capillary electrophoresis. J Electroanal Chem, 1998, 448: 79–86

    Article  CAS  Google Scholar 

  31. Nassef HM, Radi AE. Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor. J Electroanal Chem, 2006, 592: 139–146

    Article  CAS  Google Scholar 

  32. Umar A, Rahman MM, Kim SH, Hahn YB. Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun, 2008, 2: 166–168

    Article  Google Scholar 

  33. Li J, Lin XQ. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sens Actuators B, 2007, 126: 527–535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, C., Xu, X., Wang, F. et al. Carbon black supported ultra-high loading silver nanoparticle catalyst for electro-oxidation and determination of hydrazine. Sci. China Chem. 56, 911–916 (2013). https://doi.org/10.1007/s11426-012-4831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4831-3

Keywords

Navigation