Skip to main content
Log in

Double layered, one-pot hydrothermal synthesis of M-TiO2 (M = Fe3+, Ni2+, Cu2+ and Co2+) and their application in photocatalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A double layered, one-pot hydrothermal method was adopted in this work to prepare transition metal ions (Fe3+, Ni2+, Cu2+ and Co2+) doped TiO2. The morphology and chemical properties of TiO2 and the status of metal ions were characterized with XRD, TEM, BET, UV-Vis and XPS analysis. TEM images show that the obtained TiO2 was very uniform with an average particle size of 10.4 nm. XPS, TEM and XRD results show that transitional metals were doped onto TiO2 in the form of ions. Photocatalytic decomposition of oxalic acid under UV illumination and methylene blue degradation under visible light on these materials were conducted, respectively. The results reveal that Cu2+-TiO2 and Co2+-TiO2 showed a highest activity under UV and visible light illumination, respectively, and they were both more active than commercial P25 TiO2. With this special design of double layers, the hydrolysis of titanium precursor in the system with water can be easily controlled and metal ions are simply doped. This strategy can be further applied to synthesize metal ion doped TiO2 using various metal precursors with controllable amounts, and thus lead to better optimization of highly active photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/Visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A, 2011, 115: 13211–13241

    Article  CAS  Google Scholar 

  2. Herrmann JM. Environmental photocatalysis: Perspectives for china. Sci China Chem, 2010, 53: 1831–1843

    Article  CAS  Google Scholar 

  3. Li XZ, Zhao W, Zhao JC. Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol. Sci China Chem, 2002, 45: 421–425

    Article  CAS  Google Scholar 

  4. Su R, Tiruvalam R, He Q, Dimitratos N, Kesavan L, Hammond C, Lopez-Sanchez JA, Bechstein R, Kiely CJ, Hutchings GJ, Besenbacher F. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano, 2012, 6: 6284–6292

    Article  CAS  Google Scholar 

  5. Akpan UG, Hameed BH. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl Catal A: General, 2010, 375: 1–11

    Article  CAS  Google Scholar 

  6. Adán C, Bahamonde A, Fernández-García M, Martínez-Arias A. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl Catal B: Environ, 2007, 72: 11–17

    Article  Google Scholar 

  7. Wang EJ, Yang WS, Cao AYJ. Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity. J Phys Chem C, 2009, 113: 20912–20917

    Article  CAS  Google Scholar 

  8. Wang CC, Ying JY. Sol gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater, 1999, 11: 3113–3120

    Article  CAS  Google Scholar 

  9. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today, 2003, 84: 191–196

    Article  CAS  Google Scholar 

  10. Navío J, Colón G, Litter MI, Bianco GN. Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate. J Mol Catal A:Chem, 1996, 106: 267–276

    Article  Google Scholar 

  11. Zhang X, Zhou M, Lei L. Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal Commun, 2006, 7: 427–431

    Article  CAS  Google Scholar 

  12. Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal, 2013, 297: 236–243

    Article  CAS  Google Scholar 

  13. Testino A, Bellobono IR, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc, 2007, 129: 3564–3575

    Article  CAS  Google Scholar 

  14. Sun Z, Kim JH, Zhao Y, Bijarbooneh F, Malgras V, Lee Y, Kang YM, Dou SX. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J Am Chem Soc, 2011, 133: 19314–19317

    Article  CAS  Google Scholar 

  15. Feng HJ, Zhang MH, Yu LE. Hydrothermal synthesis and photocatalytic performance of metal-ionsdoped TiO2. Appl Catal A: General, 2012, 413–414: 238–244

    Article  Google Scholar 

  16. Dinh CT, Nguyen TD, Kleitz F, Do TO. Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano, 2009, 3: 3737–3743

    Article  CAS  Google Scholar 

  17. Gao BF, Ma Y, Cao Y, Yang W, Yao J. Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J Phys Chem B, 2006, 110: 14391–14397

    Article  CAS  Google Scholar 

  18. Zhu J, Ren J, Huo YN, Bian ZF, Li H. Nanocrystalline FeTiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol gel route. J Phys Chem C, 2007, 111: 18965–18969

    Article  CAS  Google Scholar 

  19. Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S. Photocatalytic degradation of 2-chlorophenol by co-doped TiO2 nanoparticles. Appl Catal B: Environ, 2005, 57: 23–30

    Article  CAS  Google Scholar 

  20. Cao Y, Zhang WS, Liu GZ, Yue P. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J Chem, 2004, 28: 218–222

    Article  Google Scholar 

  21. Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V, Ioannidis N, Kontos AG, Falaras P, Dunlop PS, Byrne JA, Dionysiou DD. Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology, 2012, 23: 294–300

    Google Scholar 

  22. Lv A, Hu C, Nie Y, Qu J. Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl Catal B: Environ, 2012, 117–118: 246–252

    Article  Google Scholar 

  23. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2x Bx undervisible irradiation. J Am Chem Soc, 2004, 126: 4782–4783

    Article  CAS  Google Scholar 

  24. Morikawa T, Irokawa Y, Ohwaki T. Enhanced photocatalytic activity of TiO2x Nx loaded with copper ions under visible light irradiation. Appl Catal A: General, 2006, 314: 123–127

    Article  CAS  Google Scholar 

  25. Briggs D, Seah MP. Practical Surface Analysis. Volume 1. Auger and X-ray Photoelectron Spectroscopy. Chichester: John Wiley and Sons, 1990

    Google Scholar 

  26. Jense H, Soloviev A, Li Z, Søgaard EG. XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl Surf Sci, 2005, 246: 239–249

    Article  Google Scholar 

  27. Fàbrega C, Andreu T, Cabot A, Morante JR. Location and catalytic role of iron species in TiO2:Fe photocatalysts: An EPR study. J Photochem Photobiol A: Chem, 2010, 211: 170–175

    Article  Google Scholar 

  28. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 2010, 261: 3–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YongBing Xie or HongBin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Xie, Y., Yang, J. et al. Double layered, one-pot hydrothermal synthesis of M-TiO2 (M = Fe3+, Ni2+, Cu2+ and Co2+) and their application in photocatalysis. Sci. China Chem. 56, 1783–1789 (2013). https://doi.org/10.1007/s11426-013-4938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4938-1

Keywords

Navigation