Skip to main content
Log in

Measurement of the association constants through micro-Raman spectra of supersaturated lithium perchlorate droplets

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

High quality micro-Raman spectra of the LiClO4 droplet with mass of nanogram scale were obtained at various concentrations from dilute to supersaturated state. From component band analysis of the v 1-ClO4 band, four peaks at 933.3, 936.8, 942.1 and 950.7 cm−1 were identified and assigned to free solvated perchlorate anion, solvent-shared ion pair, contact ion pair and complex ion aggregates, respectively. As expected, the signature of free solvated ClO4 ion was observed to decrease in intensity with the increase in concentration. The intensity of the signature from solvent-shared ion pair was observed to rise with increase in concentration from 1.8 mol/kg to 5.0 mol/kg before decreasing as the concentration was further increased to 5.6 mol/kg. Signatures of contact ion pair and of complex ion aggregates were shown to increase as the concentration was enhanced. Based upon the Eigen mechanism, we show that three association equilibria can be used to describe the transformations between free solvated perchlorate anion, solvent-shared ion pair, contact ion pair and complex ion aggregates. The overall association constant, K, and the stepwise association constants K i (i = 1 to 3) in the Eigen mechanism were determined separately with values of 0.025 ± 0.003, 0.023 ± 0.002, 0.068 ± 0.033 and 0.686 ± 0.174. Based on these constants, the electronic performance can be reasonably predicted by the optimum choice of electrolyte concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Krause LJ, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J Power Sources, 1997, 68: 320–325

    Article  CAS  Google Scholar 

  2. Ishikawa M, Wen SQ, Matsuda Y. Ionic association of lithium salts in propylene carbonate/1,2-dimethoxyethane mixed systems for lithium batteries. J Power Sources, 1993, 45: 229–236

    Article  CAS  Google Scholar 

  3. Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H. An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed, 2007, 46: 295–297

    Article  Google Scholar 

  4. Yin J, Zheng C, Qi L, Wang H. Concentrated NaClO4 aqueous solutions as promising electrolytes for electric double-layer capacitors. J Power Sources, 2011, 196: 4080–4087

    Article  CAS  Google Scholar 

  5. Abraham KM, Pasquariello DM. Synthesis, characterization, and lithium battery applications of molybdenum oxysulfides. Chem Mater, 1993, 5: 1233–1241

    Article  CAS  Google Scholar 

  6. Jones CHW, Kovacs PE, Sharma RD, McMillan RS. An iron-57 Moessbauer study of the intermediates formed in the reduction of iron disulfide in the lithium/iron disulfide battery system. J Phys Chem, 1991, 95: 774–779

    Article  CAS  Google Scholar 

  7. Marcus Y, Hefter G. Ion pairing. Chem Rev, 2006, 106: 4585–4621

    Article  CAS  Google Scholar 

  8. He KJ, Chen H, Zhu YY, Wang LY, Zhang YH. Measurement of electric properties of the single supersaturated aerosol droplet. Chin Sci Bull, 2008, 53: 1773–1776

    Article  CAS  Google Scholar 

  9. Chen Z, Hojo M. Relationship between triple ion formation constants and the salt concentration of the minimum in the conductometric curves in low-permittivity solvents. J Phys Chem B, 1997, 101: 10896–10902

    Article  CAS  Google Scholar 

  10. Chagnes A, Carré B, Willmann P, Lemordant D. Modeling viscosity and conductivity of lithium salts in butyrolactone. J Power Sources, 2002, 109: 203–213

    Article  CAS  Google Scholar 

  11. Ue M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and gamma-butyrolactone. J Electrochem Soc, 1994, 141: 3336–3342

    Article  CAS  Google Scholar 

  12. Brouillette D, Perron G, Desnoyers J. Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochim Acta, 1999, 44: 4721–4742

    Article  CAS  Google Scholar 

  13. Ratcliffe CI, Irish DE. Vibrational spectral studies of solutions at elevated temperatures and pressures. VI. Raman studies of perchloric acid. Can J Chem, 1984, 62: 1134–1144

    Article  CAS  Google Scholar 

  14. Ritzhaupt G, Devlin JP. Infrared spectra of matrix isolated alkali metal perchlorate ion pairs. J Chem Phys, 1975, 62: 1982–1986

    Article  CAS  Google Scholar 

  15. Draeger J, Ritzhaupt G, Devlin JP. Matrix spectra, force constants, and structures for M+ClO4 and hydrated alkali metal perchlorate ion pairs. Inorg Chem, 1979, 18: 1808–1811

    Article  CAS  Google Scholar 

  16. Berman HA, Stengle TR. contact ion pairing of the perchlorate ion. A chlorine-35 nuclear magnetic resonance study. I. Solutions in pure solvents. J Phys Chem, 1975, 79: 1001–1005

    Article  CAS  Google Scholar 

  17. Greenberg MS, Popov AI. Spectroscopic studies of ionic solvation. XXI. A raman, infrared, and NMR study of sodium perchlorate solutions in nonaqueous solvents. J Phys Chem, 1976, 5: 653–665

    CAS  Google Scholar 

  18. Frost RL, James DW, Roger A, Mayes RE. Ion-pair formation and anion relaxation in aqueous solutions of group 1 perchlorates. A raman spectral study. J Phys Chem, 1982, 86: 3840–3845

    Article  CAS  Google Scholar 

  19. Sastry MIS, Singh S. Raman spectral studies of solutions of alkali metal perchlorates in dimethyl sulfoxide and water. Can J Chem, 1985, 63: 1351–1356

    Article  CAS  Google Scholar 

  20. Battisti D, Nazri GA, Klassen B, Aroca R. Vibrational studies of lithium perchlorate in propylene carbonate solutions. J Phys Chem, 1993, 97: 5826–5830

    Article  CAS  Google Scholar 

  21. Hester RE, Plane RA. A Raman spectrophotometric comparison of interionic association in aqueous solutions of metal nitrates, sulfates, and perchlorates. Inorg Chem, 1964, 3: 769–770

    Article  CAS  Google Scholar 

  22. Jones MM, Jones EA, Harmon DF, Semmes RT. A search for perchlorate complexes. Raman spectra of perchlorate solutions. J Am Chem Sic, 1961, 83: 2038–2042

    CAS  Google Scholar 

  23. D’Aprano A. Association of alkali perchlorates in anhydrous methanol at 25.deg. J Phys Chem, 1972, 76: 2920–2922

    Article  Google Scholar 

  24. Wang F, Zhang YH, Li SH, Wang LY, Zhao LJ. A strategy for single supersaturated droplet analysis: Confocal Raman investigations on the complicated hygroscopic properties of individual MgSO4 droplets on the quartz substrate. Anal Chem, 2005, 77: 7148–7155

    Article  CAS  Google Scholar 

  25. Zhang YH, Chan CK. Investigations of water monomers in supersaturated NaClO4, LiClO4 and Mg(ClO4)2 droplets using Raman spectroscopy. J Phys Chem A, 2003, 107: 5956–5962

    Article  CAS  Google Scholar 

  26. Zhang YH, Chan CK. Study of contact ion pairs of supersaturated magnesium sulfate solutions using raman scattering of levitated single droplets. J Phys Chem A, 2000, 104: 9191–9196

    Article  CAS  Google Scholar 

  27. Xiao HS, Dong JL, Wang LY, Zhao LJ, Wang F, Zhang YH. Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets. Environ Sci Technol, 2008, 42: 8698–8702

    Article  CAS  Google Scholar 

  28. Guo X, Xiao HS, Wang F, Zhang YH. Micro-Raman and FTIR spectroscopic observation on the phase transitions of MnSO4 droplets and ionic interactions between Mn2+ and SO4 2−. J Phys Chem A, 2010, 114: 6480–6486

    Article  CAS  Google Scholar 

  29. Li XH, Wang F, Lu PD, Dong JL, Wang LY, Zhang YH. Confocal Raman observation of the efflorescence/deliquescence processes of individual NaNO3 particles on quartz. J Phys Chem B, 2006, 110: 24993–24998

    Article  CAS  Google Scholar 

  30. Rudolph WW, Irmer G, Hefter GT. Raman spectroscopic investigation of speciation in MgSO4(aq). PCCP, 2003, 5: 5253–5261

    Article  CAS  Google Scholar 

  31. Buchner R, Chen T, Hefter G. Complexity in “simple” electrolyte solutions: Ion pairing in MgSO4(aq). J Phys Chem B, 2004, 108: 2365–2375

    Article  CAS  Google Scholar 

  32. Victor PJ, Das B, Hazra DK. A study on the solvation phenomena of some sodium salts in 1,2-dimethoxyethane from conductance, viscosity, ultrasonic velocity, and FT-Raman spectral measurements. J Phys Chem A, 2001, 105: 5960–5964

    Article  CAS  Google Scholar 

  33. Chabanel M. Ionic aggregates of 1-1 salts in non-aqueous solutions: Structure, thermodynamics and salvation. Pure Appl Chem, 1990, 62: 35–46

    Article  CAS  Google Scholar 

  34. Miller AG, Macklin JW. Vlbrational spectroscopic studies of sodium perchlorate contact ion pair formation in aqueous solution. J Phys Chem, 1985, 89: 1193–1201

    Article  CAS  Google Scholar 

  35. Guo X, Shou JJ, Zhang YH, Reid JP. Micro-Raman analysis of association equilibria in supersaturated NaClO4 droplets. Analyst, 2010, 135: 495–502

    Article  CAS  Google Scholar 

  36. Zhao LJ, Zhang YH, Wang LY, Hu YA, Ding F. FTIR spectroscopic investigations of supersaturated NaClO4 aerosols. PCCP, 2005, 7: 2723–2730

    Article  CAS  Google Scholar 

  37. Daprano A. The conductance and association behavior of alkali perchlorates. J Phys Chem, 1971, 75: 3290–3293

    Article  CAS  Google Scholar 

  38. Davis AR, Oliver BG. Raman spectroscopic evidence for contact ion pairing in aqueous magnesium sulfate solutions. J Phys Chem, 1973, 77: 1315–1316

    Article  CAS  Google Scholar 

  39. Chabanel M, Legoff D, Touaj K. Aggregation of perchlorates in aprotic donor solvents. Part 1. Lithium and sodium perchlorates. J Chem Soc, Faraday Trans, 1996, 92: 4199–4205

    Article  Google Scholar 

  40. Barthel J, Neueder R, Poepke H, Wittmann H. Osmotic and activity coefficients of nonaqueous electrolyte solutions. 1. Lithium perchlorate in the protic solvents methanol, ethanol, and 2-propanol. J Solution Chem, 1998, 27: 1055–1066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShuFeng Pang or YunHong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Tan, S., Pang, S. et al. Measurement of the association constants through micro-Raman spectra of supersaturated lithium perchlorate droplets. Sci. China Chem. 56, 1633–1640 (2013). https://doi.org/10.1007/s11426-013-4970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4970-1

Keywords

Navigation