Skip to main content
Log in

Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bucknall CB, Gilbert AH. Toughening tetrafunctional epoxy-resins using polyetherimide. Polymer, 1989, 30(2): 213–217

    Article  CAS  Google Scholar 

  2. Lee MC, Ho TH, Wang CS. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. J Appl Polym Sci, 1996, 62: 217–225

    Article  CAS  Google Scholar 

  3. Lin ST, Huang SK. Thermal degradation study of siloxane-DGEBA epoxy copolymers. Eur Polym J, 1997, 33(3): 365–373

    Article  CAS  Google Scholar 

  4. Raquez JM, Del Glise M, Lacrampe MF, Krawczak P. Thermosetting (bio)materials derived from renewable resources: A critical review. Prog Polym Sci, 2010, 35(4): 487–509

    Article  CAS  Google Scholar 

  5. Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J Environ Manage, 2012, 104: 19–34

    Article  CAS  Google Scholar 

  6. Chrysanthos M, Galy J, Pascault JP. Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether. Polymer, 2011, 52(16): 3611–3620

    Article  CAS  Google Scholar 

  7. Miyagawa H, Mohanty AK, Misra M, Drzal LT. Thermo-physical and impact properties of epoxy containing epoxidized linseed oil, 1-anhydride-cured epoxy. Macromol Mater Eng, 2004, 289(7): 629–635

    Article  CAS  Google Scholar 

  8. Miyagawa H, MisrA M, Drzal LT, Mohanty AK. Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polym Eng Sci, 2005, 45(4): 487–495

    Article  CAS  Google Scholar 

  9. Gupta AP, Ahmad S, Dev A. Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polym Eng Sci, 2011, 51(6): 1087–1091

    Article  CAS  Google Scholar 

  10. Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R. Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. J Am Oil Chem Soc, 2013, 90(3): 449–457

    Article  CAS  Google Scholar 

  11. Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Polym Sci Pol Chem, 2011, 49(11): 2434–2444

    Article  CAS  Google Scholar 

  12. Hofmann K, Glasser W. Engineering plastics from lignin, 23. Network formation of lignin-based epoxy resins. Macromol Chem Phys, 1994, 195(1): 65–80

    Article  CAS  Google Scholar 

  13. Hofmann K, Glasser WG. Engineering plastics from lignin. 22. Cure of lignin based epoxy resins. J Adhes, 1993, 40(2–4): 229–241

    Article  CAS  Google Scholar 

  14. El Mansouri NE, Yuan QL, HUANG FR. Synthesis and characterization of kraft lignin-based epoxy resins. BioResources, 2011, 6(3): 2492–2503

    Google Scholar 

  15. El Mansouri NE, Yuan QL, Huang FR. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. Bio Resources, 2011, 6(3): 2647–2662

    Google Scholar 

  16. Koike T. Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci, 2012, 52(4): 701–717

    Article  CAS  Google Scholar 

  17. Liu XQ, Zhang JW. High-performance biobased epoxy derived from rosin. Polym int, 2010, 59(5): 607–609

    CAS  Google Scholar 

  18. Liu XQ, Huang W, Jiang YH, Zhu J, Zhang CZ. Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polym Lett, 2012, 6(4): 293–298

    Article  CAS  Google Scholar 

  19. Deng LL, Shen MM, Yu J, Wu K, Ha CY. Preparation, characterization, and flame retardancy of novel rosin-based siloxane epoxy resins. Ind Eng Chem Res, 2012, 51(24): 8178–8184

    Article  CAS  Google Scholar 

  20. Patel M, Patel R, Patel V. Effects of reactive diluent diepoxidized cardanol and epoxy fortifier on curing kinetics of epoxy resin. J Therm Anal Calorim, 1989, 35(1): 47–57

    Article  CAS  Google Scholar 

  21. Aouf C, Lecomte J, Villeneuve P, Dubreucq E, Fulcrand H. Chemoenzymatic functionalization of gallic and vanillic acids: Synthesis of bio-based epoxy resins prepolymers. Green Chem, 2012, 14(8): 2328–2336

    Article  CAS  Google Scholar 

  22. Aouf C, Nouailhas H, Fache M, Caillol S, Boutevin B, Fulcrand H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur Polym J, 2013, 49(6): 1185–1195

    Article  CAS  Google Scholar 

  23. Cao L, Liu X, Na H, Wu Y, Zheng W, Zhu J. How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J Mater Chem A, 2013, 1(16): 5081–5088

    Article  CAS  Google Scholar 

  24. Werpy T, Petersen G. Eds. Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. PNNL, NREL, EERE report, 2004

    Google Scholar 

  25. Ma SQ, Liu XQ, Jiang YH, Tang ZB, Zhang CZ, Zhu J. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem, 2013, 15(1): 245–254

    Article  CAS  Google Scholar 

  26. Zhang C, Huang JY, Liu SM, Zhao JQ. The synthesis and properties of a reactive flame-retardant unsaturated polyester resin from a phosphorus-containing diacid. Polym Adv Technol, 2011, 22(12): 1768–1777

    Article  CAS  Google Scholar 

  27. Laverty JJ. Hydrosilylation of unsaturated polyesters. J Polym Sci: Polym Lett Edition, 1973, 11(5): 327–332

    CAS  Google Scholar 

  28. Lin CH, Wu CY, Wang CS. Synthesis and properties of phosphorus-containing advanced epoxy resins. II. J Appl Polym Sci, 2000, 78(1): 228–235

    Article  CAS  Google Scholar 

  29. Shieh JY, Wang CS. Effect of the organophosphate structure on the physical and flame-retardant properties of an epoxy resin. Polym Sci Pol Chem, 2002, 40(3): 369–378

    Article  CAS  Google Scholar 

  30. Grand AF, Wilkie CA. Fire Retardancy of Polymeric Materials. Marcel Dekker inc., New York, 2000

    Google Scholar 

  31. The European Parliament and the European Council: Off. J. Eur. Union, 2003, Directive 2002/96/EC of 27

  32. Ravichandran S, Nagarajan S, Ku BC, Coughlin B, Emrick T, Kumar J, Nagarajan R. Halogen-free ultra-high flame retardant polymers through enzyme catalysis. Green Chem, 2012, 14(3): 819–824

    Article  CAS  Google Scholar 

  33. Wang ZF, Liu WQ, Hu CH, Ma SQ. Study on the modification of epoxy resin by a phosphorus- and silica-containing hybrid. J Appl Polym Sci, 2011, 121(4): 2213–2219

    Article  CAS  Google Scholar 

  34. Wang X, Hu Y, Song L, Xing WY, Lu HD. Preparation, flame retardancy, and thermal degradation of epoxy thermosets modified with phosphorous/nitrogen-containing glycidyl derivative. Polym Adv Technol, 2012, 23(2): 190–197

    Article  CAS  Google Scholar 

  35. Xiong YQ, Zhang XY, Liu J, Li MM, Guo F, Xia XN, Xu WJ. Synthesis of novel phosphorus-containing epoxy hardeners and thermal stability and flame-retardant properties of cured products. J Appl Polym Sci, 2012, 125(2): 1219–1225

    Article  CAS  Google Scholar 

  36. Zhang WC, Li XM, Fan HB, Yang RJ. Study on mechanism of phosphorus-silicon synergistic flame retardancy on epoxy resins. Polym Degrad Stabil, 2012, 97(11): 2241–2248

    Article  CAS  Google Scholar 

  37. Zang L, Wagner S, Ciesielski M, Muller P, Doring M. Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym Adv Technol, 2011, 22(7): 1182–1191

    Article  CAS  Google Scholar 

  38. Wang X, Hu Y, Song L, Yang HY, Xing WY, Lu HD. Synthesis and characterization of a DOPO-substitued organophosphorus oligomer and its application in flame retardant epoxy resins. Prog Org Coat, 2011, 71(1): 72–82

    Article  CAS  Google Scholar 

  39. Hou M, Liu W, Su Q, Liu Y. Synthesis of a novel phosphorus-containing polysiloxane and its use as the modifier of thermal properties of an epoxy resin. Polimery, 2007, 52(11–12): 836–840

    CAS  Google Scholar 

  40. Wang CS, Shieh JY. Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz[c,e] [1,2]oxaphosphorin-6-yl)1,4-benzenediol. Polymer, 1998, 39(23): 5819–5826

    Article  CAS  Google Scholar 

  41. Wang XD, Zhang Q. Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur Polym J, 2004, 40(2): 385–395

    Article  CAS  Google Scholar 

  42. Liu YL, Wu CS, Chiu YS, Ho WH. Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. Polym Sci Pol Chem, 2003, 41(15): 2354–2367

    Article  CAS  Google Scholar 

  43. Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur Polym J, 2011, 47(5): 1081–1089

    Article  CAS  Google Scholar 

  44. Schafer A, Seibold S, Walter O, Doring M. Novel high T g flame retardancy approach for epoxy resins. Polym Degrad Stabil, 2008, 93(2): 557–560

    Article  Google Scholar 

  45. Hou MH, Liu WQ, Su QQ, Liu YF. Studies on the thermal properties and flame retardancy of epoxy resins modified with polysiloxane containing organophosphorus and epoxide groups. Polym J, 2007, 39(7): 696–702

    Article  CAS  Google Scholar 

  46. Wang X, Hu Y, Song L, Xing WY, Lu HD. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrolysis, 2011, 92(1): 164–170

    Article  CAS  Google Scholar 

  47. Gu J, Dang J, Wu Y, Xie C, Han Y. Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. Polym-Plast Technol Eng, 2012, 51(12): 1198–1203

    Article  CAS  Google Scholar 

  48. Wang CS, Shieh JY. Phosphorus-containing epoxy resin for an electronic application. J Appl Polym Sci, 1999, 73(3): 353–361

    Article  CAS  Google Scholar 

  49. Yu D, Liu W, Liu Y. Synthesis, thermal properties, and flame retardance of phosphorus-containing epoxy-silica hybrid resins. Polym Composite, 2010, 31(2): 334–339

    CAS  Google Scholar 

  50. Yu D, Liu W, Liu Y. Study on heat resistance and flame retardation of polyfunctional epoxy-silica-phosphorus hybrid resins. Chem Lett, 2008, 37(11): 1118–1119

    Article  CAS  Google Scholar 

  51. Höfer R, Selig M. 10.02-Green chemistry and green polymer chemistry. Polym Sci: A Compr Ref, 2012, 5–14

    Chapter  Google Scholar 

  52. Hofer R. History of the Sustainability concept-renaissance of renewable resources. Sustainable Solutions for Modern Economies, RSC Publishing: Cambridge, 2009, 1–11

    Google Scholar 

  53. Liu XQ, Xin WB, Zhang JW. Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem, 2009, 11(7): 1018–1025

    Article  CAS  Google Scholar 

  54. Tao ZQ, Yang SY, Chen JS, Fan L. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins. Eur Polym J, 2007, 43(4): 1470–1479

    Article  CAS  Google Scholar 

  55. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Ind Natl Bur Stand, 1956, 57: 217–221

    Article  CAS  Google Scholar 

  56. Ozawa T. A modified method for kinetic analysis of thermoanalytical data. J Therm Anal, 1976, 9: 369–373

    Article  CAS  Google Scholar 

  57. Liu, Y. L, Chou CI. The effect of silicon sources on the mechanism of phosphorus-silicon synergism of flame retardation of epoxy resins. Polym Degrad Stabil, 2005, 90(3): 515–522

    Article  CAS  Google Scholar 

  58. Liu FH, Wang ZG, Wang YL, Zhang B. Copolymer networks from carboxyl-containing polyaryletherketone and diglycidyl ether of bisphenol-A: Preparation and properties. J Polym Sci Pt B-Polym Phys, 2010, 48(23): 2424–2431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoQing Liu or Jin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, S., Liu, X., Jiang, Y. et al. Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci. China Chem. 57, 379–388 (2014). https://doi.org/10.1007/s11426-013-5025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5025-3

Keywords

Navigation