Skip to main content
Log in

Realizing over 10% efficiency in polymer solar cell by device optimization

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The low band gap polymer based on benzodithiophene (BDT)-thieno[3,4-b]thiophene (TT) backbone, PBDT-TS1, was synthesized following our previous work and the bulk heterojunction (BHJ) material comprising PBDT-TS1/PC71BM was optimized and characterized. By processing the active layer with different additives i.e. 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN) and 1, 8-octanedithiol (ODT) and optimizing the ratio of each additive in the host solvent, a high PCE of 9.98% was obtained under the condition of utilizing 3% DIO as processing additive in CB. The effect of varied additives on photovoltaic performance was illustrated with atomic force microscopy (AFM) and transmission electron microscope (TEM) measurements that explained changes in photovoltaic parameters. These results provide valuable information of solvent additive choice in device optimization of PBDTTT polymers, and the systematic device optimization could be applied in other efficient photovoltaic polymers. Apparently, this work presents a great advance in single junction PSCs, especially in PSCs with conventional architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  2. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  3. Duan CH, Huang F, Cao Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem, 2012, 22: 10416–10434

    Article  CAS  Google Scholar 

  4. Li ZG, Zhao XY, Li X, Gao ZQ, Mi BX, Huang W. Organic thin-film solar cells: devices and materials. Sci China Chem, 2012, 55: 553–578

    Article  CAS  Google Scholar 

  5. Chen CC, Chang WH, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater, 2014, 26: 5670–5677

    Article  CAS  Google Scholar 

  6. He ZC, Wu HB, Cao Y. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer. Adv Mater, 2014, 26: 1006–1024

    Article  CAS  Google Scholar 

  7. Li WW, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ. Efficient tandem and triplejunction polymer solar cells. J Am Chem Soc, 2013, 135: 5529–5532

    Article  CAS  Google Scholar 

  8. Yang TB, Wang M, Duan CH, Hu XW, Huang L, Peng JB, Huang F, Gong X. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy Environ Sci, 2012, 5: 8208–8214

    Article  CAS  Google Scholar 

  9. Ye L, Zhang SQ, Huo LJ, Zhang MJ, Hou JH. Molecular Design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res, 2014, 47: 1595–1603

    Article  CAS  Google Scholar 

  10. Huo LJ, Hou JH. Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polym Chem, 2011, 2: 2453–2461

    Article  CAS  Google Scholar 

  11. Wang M, Hu XW, Liu P, Li W, Gong X, Huang F, Cao Y. Donor acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5] thiadiazole for high-performance polymer solar cells. J Am Chem Soc, 2011, 133: 9638–9641

    Article  CAS  Google Scholar 

  12. Wang Y, Liu Y, Chen S, Peng R, Ge ZY. Significant enhancement of polymer solar cell performance via side-chain engineering and simple solvent treatment. Chem Mater, 2013, 25: 3196–3204

    Article  CAS  Google Scholar 

  13. Warnan J, El Labban A, Cabanetos C, Hoke ET, Shukla PK, Risko C, Brédas J-L, McGehee MD, Beaujuge PM. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells. Chem Mater 2014, 26: 2299–2306

    Article  CAS  Google Scholar 

  14. Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie ZY, Geng YH, Wang FS. Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. Adv Mater, 2014, 26: 471–476

    Article  CAS  Google Scholar 

  15. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3: 649–653

    Article  CAS  Google Scholar 

  16. Hou JH, Chen HY, Zhang SQ, Chen RI, Yang Y, Wu Y, Li G. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc, 2009, 131: 15586–15587

    Article  CAS  Google Scholar 

  17. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138

    Article  CAS  Google Scholar 

  18. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed, 2011, 50: 9697–9702

    Article  CAS  Google Scholar 

  19. Guo X, Zhang MJ, Ma W, Ye L, Zhang SQ, Liu SJ, Ade H, Huang F, Hou JH. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Adv Mater, 2014, 26: 4043–4049

    Article  CAS  Google Scholar 

  20. Huang Y, Guo X, Liu F, Huo LJ, Chen YN, Russell TP, Han CC, Li YF, Hou JH. Improving the ordering and photovoltaic properties by extending pi-conjugated area of electron-donating units in polymers with D-A structure. Adv Mater, 2012, 24: 3383–3389

    Article  CAS  Google Scholar 

  21. Zhang MJ, Guo X, Zhang SQ, Hou JH. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater, 2014, 26: 1118–1123

    Article  CAS  Google Scholar 

  22. Kim JH, Song CE, Kim B, Kang IN, Shin WS, Hwang DH. Thieno[3,2-b] thiophene-substituted benzo[1,2-b:4,5-b′]dithiophene as a promising building block for low bandgap semiconducting polymers for highperformance single and tandem organic photovoltaic cells. Chem Mater, 2013, 26: 1234–1242

    Article  Google Scholar 

  23. Cui CH, Wong WY, Li YF. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ Sci, 2014, 7: 2276–2284

    Article  CAS  Google Scholar 

  24. Liu P, Zhang K, Liu F, Jin Y, Liu SJ, Russell TP, Yip HL, Huang F, Cao Y. Effect of fluorine content in thienothiophene-benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chem Mater, 2014, 26: 3009–3017

    Article  Google Scholar 

  25. Zhang SQ, Ye L, Zhao WC, Liu D, Yao HF, Hou JH. Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. Macromolecules, 2014, 47: 4653–4659

    Article  CAS  Google Scholar 

  26. Ye L, Zhang SQ, Zhao WC, Yao H, Hou JH. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605

    Article  CAS  Google Scholar 

  27. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591–595

    Google Scholar 

  28. Liao SH, Jhuo HJ, Cheng YS, Chen SA. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater, 2013, 25: 4766–4771

    Article  CAS  Google Scholar 

  29. Liu SJ, Zhang K, Lu J, Zhang J, Yip HL, Huang F, Cao Y. High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J Am Chem Soc, 2013, 135: 15326–15329

    Article  CAS  Google Scholar 

  30. Li CZ, Chang CY, Zang Y, Ju HX, Chueh CC, Liang PW, Cho N, Ginger DS, Jen AKY. Suppressed charge eecombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer. Adv Mater, 2014, DOI: 10.1002/adma.201402276

    Google Scholar 

  31. Tan ZA, Li L, Wang FZ, Xu Q, Li SS, Sun G, Tu X, Hou X, Hou JH, Li YF. Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. Adv Energy Mater, 2014, 4: 1300884

    Google Scholar 

  32. Tan ZA, Zhang WQ, Zhang ZG, Qian DP, Huang Y, Hou JH, Li YF. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv Mater, 2012, 24: 1476–1481

    Article  CAS  Google Scholar 

  33. Li XH, Choy WCH, Huo LJ, Xie FX, Sha WEI, Ding BF, Guo X, Li YF, Hou JH, You JB, Yang Y. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater, 2012, 24: 3046–3052

    Article  CAS  Google Scholar 

  34. Ye L, Jing Y, Guo X, Sun H, Zhang S, Zhang MJ, Huo LJ, Hou JH. Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J Phys Chem C, 2013, 117: 14920–14928

    Article  CAS  Google Scholar 

  35. Liu F, Gu Y, Shen X, Ferdous S, Wang HW, Russell TP. Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog Polym Sci, 2013, 38: 1990–2052

    Article  CAS  Google Scholar 

  36. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater, 2007, 6: 497–500

    Article  CAS  Google Scholar 

  37. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ. Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc, 2008, 130: 3619–3623

    Article  CAS  Google Scholar 

  38. Ye L, Zhang SQ, Ma W, Fan BH, Guo X, Huang Y, Ade H, Hou JH. From binary to ternary solvent: morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells. Adv Mater, 2012, 24: 6335–6341

    Article  CAS  Google Scholar 

  39. Guo X, Cui CH, Zhang MJ, Huo LJ, Huang Y, Hou JH, Li YF. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C-70 bisadduct with solvent additive. Energy Environ Sci, 2012, 5: 7943–7949

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Ye, L., Zhao, W. et al. Realizing over 10% efficiency in polymer solar cell by device optimization. Sci. China Chem. 58, 248–256 (2015). https://doi.org/10.1007/s11426-014-5273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5273-x

Keywords

Navigation