Skip to main content
Log in

Design and synthesis by redox polymerization of a bio-based carboxylic elastomer for green tire

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Poly(dibutyl itaconate-co-isoprene-co-methacrylic acid) (PDIM) elastomer was designed and synthesized by redox emulsion polymerization under mild conditions. PDIM has high molecular weight, relatively high yield, and low glass transition temperature (T g). The structure of PDIM was determined by FTIR and NMR, and the carboxyl content was obtained by titration in a non-proton solvent. Tensile strength and elongation at break increased with increasing carboxyl content. In addition, the interaction between PDIM and silica was elucidated by rubber process analyzer (RPA) and TEM, and the results showed that the silica-PDIM interaction was strong, but the silica-silica interaction was weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall DE, Moreland JC. Fundamentals of rolling resistance. Rubber Chem Technol, 2001, 74: 525–539

    Article  CAS  Google Scholar 

  2. Ghosh S, Sengupta RA, Heinrich G. Investigations on rolling resistance of nanocomposite based passenger car radial tyre tread compounds using simulation technique. Tire Sci Technol, 2011, 39: 210–222

    Article  Google Scholar 

  3. Herd C, Edwards C, Curtis J, Crossley S, Schomberg KC, Gross T, Steinhauser N, Kloppenberg H, Hardy D, Lucassen A. Use of surface-treated carbon blacks in an elastomer to reduce compound hysteresis and tire rolling resistance and improve wet traction. US Patent, 20130046064 A1, 2013-02-21

    Google Scholar 

  4. Rauline R. Rubber compound and tires based on such a compound. European Patent, 0501227 (A1), 1992-09-02

    Google Scholar 

  5. Wolff S. Silanes in tire compounding after ten years—a review. Tire Sci Technol, 1987, 15: 276–294

    Article  Google Scholar 

  6. Zhu L, Wool RP. Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer, 2006, 47: 8106–8115

    Article  CAS  Google Scholar 

  7. Job KA. Trends in green tire manufacturing. Rubber World, 2014, 249: 32–38

    Google Scholar 

  8. Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer JWM. Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. Eur Polym J, 2014, 51: 69–79

    Article  CAS  Google Scholar 

  9. Chattopadhyay PK, Basuli U, Chattopadhyay S. Studies on novel dual filler based epoxidized natural rubber nanocomposite. Polym Compos, 2010, 31: 835–846

    CAS  Google Scholar 

  10. Chapman AV. Natural rubber and NR-based polymers: renewable materials with unique properties. Transport, 2007, 5: 8

    Google Scholar 

  11. Wei T, Lei LJ, Kang HL, Qiao B, Wang Z, Zhang LQ, Coates P, Hua KC, Kulig J. Tough bio-based elastomer nanocomposites with high performance for engineering applications. Adv Eng Mater, 2012, 14: 112–118

    Article  CAS  Google Scholar 

  12. Wang R, Ma J, Zhou X, Wang Z, Kang H, Zhang L, Hua KC, Kulig J. Design and preparation of a novel cross-linkable, high molecular weight, and bio-based elastomer by emulsion polymerization. Macromolecules, 2012, 45: 6830–6839

    Article  CAS  Google Scholar 

  13. Wang Z, Zhang X, Wang R, Kang H, Qiao B, Ma J, Zhang L, Wang H. Synthesis and characterization of novel soybean-oil-based elastomers with favorable processability and tunable properties. Macromolecules, 2012, 45: 9010–9019

    Article  CAS  Google Scholar 

  14. Du M, Guo B, Lei Y, Liu M, Jia D. Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer, 2008, 49: 4871–4876

    Article  CAS  Google Scholar 

  15. Okabe M, Lies D, Kanamasa S, Park EY. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol, 2009, 84: 597–606

    Article  CAS  Google Scholar 

  16. Reddy CSK, Singh RP. Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol, 2002, 85: 69–71

    Article  CAS  Google Scholar 

  17. Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J, 2012, 7: 186–198

    Article  CAS  Google Scholar 

  18. Green EM. Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol, 2011, 22: 337–343

    Article  CAS  Google Scholar 

  19. Singh R. Facts, growth, and opportunities in industrial biotechnology. Org Process Res Dev, 2010, 15: 175–179

    Article  Google Scholar 

  20. Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, Xian M. Bioisoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresour Technol, 2012, 104: 642–647

    Article  CAS  Google Scholar 

  21. Abdollahi M, Sharifpour M. Effect of carboxylic acid monomer and butadiene on particle growth in the emulsifier-free emulsion copolymerization of styrene-butadiene-carboxylic acid monomer. Polymer, 2007, 48: 2035–2045

    Article  CAS  Google Scholar 

  22. Sarac AS. Redox polymerization. Prog Polym Sci, 1999, 24: 1149–1204

    Article  CAS  Google Scholar 

  23. Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog Polym Sci, 2002, 27: 689–757

    Article  CAS  Google Scholar 

  24. Qi G, Jones CW, Schork FJ. Enzyme-initiated miniemulsion polymerization. Biomacromolecules, 2006, 7: 2927–2930

    Article  CAS  Google Scholar 

  25. Ishimoto K, Arimoto M, Okuda T, Yamaguchi S, Aso Y, Ohara H, Kobayashi S, Ishii M, Morita K, Yamashita H, Yabuuchi N. Biobased polymers: synthesis of graft copolymers and comb polymers using lactic acid macromonomer and properties of the product polymers. Biomacromolecules, 2012, 13: 3757–3768

    Article  CAS  Google Scholar 

  26. Vijayendran BR. Effect of carboxylic monomers on acid distribution in carboxylated polystyrene latices. J Appl Polym Sci, 1979, 23: 893–901

    Article  CAS  Google Scholar 

  27. Carbajo RJ, Neira JL. NMR for Chemists and Biologists. Heidelberg: Springer, 2013. 36–38

    Book  Google Scholar 

  28. Wang W, Chang Z, Wang M, Zhang Z. Effect of carboxyl on vulcanization and mechanical properties of carboxylated acrylic rubber prepared by 60Co-γ-ray-induced polymerization. J Appl Polym Sci, 2006, 102: 5587–5594

    Article  CAS  Google Scholar 

  29. Ibarra L, Alzorriz M. Ionic elastomers based on carboxylated nitrile rubber and calcium oxide. J Appl Polym Sci, 2003, 87: 805–813

    Article  CAS  Google Scholar 

  30. Hamed GR, Hua KC. Effect of ZnO particle size on the curing of carboxylated NBR and carboxylated SBR. Rubber Chem Technol, 2004, 77: 214–226

    Article  CAS  Google Scholar 

  31. Smejda-Krzewicka A, Rzymski WM. Crosslinking of new elastomers functionalized with carboxyl groups. Polimery, 2006, 51: 66–68

    CAS  Google Scholar 

  32. Wu Y, Zhao Q, Zhao S, Zhang L. The influence of in situ modification of silica on filler network and dynamic mechanical properties of silica-filled solution styrene-butadiene rubber. J Appl Polym Sci, 2008, 108: 112–118

    Article  CAS  Google Scholar 

  33. Rattanasom N, Saowapark T, Deeprasertkul C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test, 2007, 26: 369–377

    Article  CAS  Google Scholar 

  34. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L. Payne effect in silica-filled styrene-butadiene rubber: influence of surface treatment. J Polym Sci Pol Phys, 2007, 45: 286–298

    Article  CAS  Google Scholar 

  35. Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A-Appl S, 2005, 36: 449–460

    Article  Google Scholar 

  36. Payne AR. Effect of dispersion on dynamic properties of filler-load rubbers. Rubber Chem Technol, 1966, 39: 365–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, R., Lei, W. et al. Design and synthesis by redox polymerization of a bio-based carboxylic elastomer for green tire. Sci. China Chem. 58, 1561–1569 (2015). https://doi.org/10.1007/s11426-015-5332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5332-y

Keywords

Navigation