Skip to main content
Log in

Electropolishing of titanium alloy under hydrodynamic mode

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Titanium (Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. With a home-made electrochemical machining workstation, cyclic voltammetry is performed at a wide potential range of [0 V, 20 V] to record the details of passivation and depassivation processes under a hydrodynamic mode. The results show that the thickness of viscous layer formed on the alloy surface plays a crucial effect on the electropolishing quality. The technical parameters, including the mechanical motion rate, polishing time and electrode gap, are optimized to achieve a surface roughness less than 1.9 nm, which shows a prospective application in the electrochemical machining of Ti and it alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wayne H, Dakota B, Han X, Paul L, Everardo G. J Manuf Design Sci, 2015, 2: 1–10

    Google Scholar 

  2. Guéhennec LL, Soueidan A, Layrolle P, Amouriq Y. Dent Mater, 2007, 23: 844–854

    Article  Google Scholar 

  3. Oh CJ, Kyun DC, Lee S. Surf Coat Technol, 2000, 127: 76–85

    Article  Google Scholar 

  4. Gorsse S, Chaminade J, Petitcorps LY. Compos Part A, 1998, 29: 1229–1234

    Article  Google Scholar 

  5. Huang CA, Yung FH, Yu CH. Corros Sci, 2011, 53: 589–596

    Article  CAS  Google Scholar 

  6. Hong KP, Do KK, Chong HK. J Am Ceram Soc, 1997, 80: 743–749

    Article  Google Scholar 

  7. Cheng HB, Feng ZJ, Wang YW, Lei ST. Chin Sci Bull, 2005, 50: 172–178

    Google Scholar 

  8. Hryniewicz T, Rokicki R, Rokosz K. Surf Coat Technol, 2009, 203: 1508–1515

    Article  CAS  Google Scholar 

  9. Suzuki H, Moriwaki T, Okino T, Ando Y. CIRP Annals-Manuf Technol, 2006, 55: 385–388

    Article  Google Scholar 

  10. Jones A, Hull J. Ultrasonics, 1998, 36: 97–101

    Article  CAS  Google Scholar 

  11. Hocheng H, Kuo K. Int J Mach Tool Manu, 2002, 42: 7–13

    Article  Google Scholar 

  12. Tiley J, Shiveley K, Viswanathan GB. Micron, 2010, 41: 615–621

    Article  CAS  Google Scholar 

  13. Yuan Y, Han LH, Zhang J. Faraday Discuss, 2013, 164: 189–197

    Article  CAS  Google Scholar 

  14. Kim D, Son K, Sung D. Corros Sci, 2015, 98: 494–499

    Article  CAS  Google Scholar 

  15. Fushimi K, Kondo H, Konno H. Electrochim Acta, 2009, 55: 258–264

    Article  CAS  Google Scholar 

  16. Fushimi K, Habazaki H. Electrochim Acta, 2008, 53: 3371–3376

    Article  CAS  Google Scholar 

  17. Jia JC, Zhang J, Wang FF, Han LH. Chem Commun, 2015, 51: 17700–17703

    Article  CAS  Google Scholar 

  18. Han LH, Yuan Y, Zhang J. Anal Chem, 2013, 85: 1322–1326

    Article  CAS  Google Scholar 

  19. Zhang L, Ma XZ, Lin MX. J Phys Chem B, 2006, 110: 18432–18439

    Article  CAS  Google Scholar 

  20. Ma XZ, Zhang L, Cao GH. Electrochimi Acta, 2007, 52: 4191–4196

    Article  CAS  Google Scholar 

  21. Qin Z, Pang X, Qiao L. Corros Sci, 2014, 78: 287–292

    Article  CAS  Google Scholar 

  22. Liu S, Liu A, Wen B, Zhang R, Zhou C. J Phys Chem Lett, 2015, 6: 3327–3334

    Article  CAS  Google Scholar 

  23. Raja KS, Gandhi T, Misra M. Electrochem Commun, 2007, 9: 1069–1076

    Article  CAS  Google Scholar 

  24. Tang Z, Yin W, Geng W, Wen B, Zhang D. Sci Sin Chim, 2015, 45: 755–764

    Article  CAS  Google Scholar 

  25. Li SQ, Yin JB, Zhang GM. Sci China Chem, 2010, 53: 1068–1073

    Article  CAS  Google Scholar 

  26. Dyer CK, Leach J. J Electrochem Soc, 1978, 125: 1032–1038

    Article  CAS  Google Scholar 

  27. Szklarska SZ. Corros Sci, 2002, 44: 1143–1149

    Article  Google Scholar 

  28. Liao DL, Wu GS, Liao BQ. Colloids Surf A, 2009, 348: 270–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang-Zu Yang, Li-Min Jiang or Dongping Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Lai, J., Han, L. et al. Electropolishing of titanium alloy under hydrodynamic mode. Sci. China Chem. 59, 1525–1528 (2016). https://doi.org/10.1007/s11426-016-0211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0211-y

Keywords

Navigation