Skip to main content
Log in

Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An extremely effortless method was applied for successful synthesis of mesoporous carbonaceous materials (MCMs) using well-ordered mesoporous silica as template. Various characterizations (scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), Brunner-Emmet-Teller (BET) and Zeta potential) confirmed that MCMs had large surface area, uniform pore size distribution, and abundant oxygen-containing functional groups. The batch techniques were employed to study U(VI) adsorption on MCMs under a wide range of experiment conditions. The adsorption kinetics of U(VI) onto MCMs were well-fitted by pseudo-second-order kinetic model, indicating a chemisorption process. The excellent adsorption capacity of MCMs calculated from the Langmuir model was 293.95 mg g−1 at pH 4.0. The FT-IR and XPS analyses further evidenced that the binding of U(VI) onto MCMs was ascribed to the plentiful adsorption sites (–OH and –COOH groups) in the internal mesoporous structure, which could efficiently trap guest U(VI) ions. The results presented herein revealed that MCMs were ideal adsorbents in the efficient elimination of uranium or other lanthanides/actinides from aqueous solutions, which would play an important role in environmental pollution management application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S. Environ Sci Technol, 2017, 51: 3911–3921

    Article  CAS  Google Scholar 

  2. Xu L, Zheng T, Yang S, Zhang L, Wang J, Liu W, Chen L, Diwu J, Chai Z, Wang S. Environ Sci Technol, 2016, 50: 3852–3859

    Article  CAS  Google Scholar 

  3. Sun Y, Ding C, Cheng W, Wang X. J Hazard Mater, 2014, 280: 399–408

    Article  CAS  Google Scholar 

  4. Wang Y, Liu Z, Li Y, Bai Z, Liu W, Wang Y, Xu X, Xiao C, Sheng D, Diwu J, Su J, Chai Z, Albrecht-Schmitt TE, Wang S. J Am Chem Soc, 2015, 137: 6144–6147

    Article  CAS  Google Scholar 

  5. Sheng D, Zhu L, Xu C, Xiao C, Wang Y, Wang Y, Chen L, Diwu J, Chen J, Chai Z, Albrecht-Schmitt TE, Wang S. Environ Sci Technol, 2017, 51: 3471–3479

    Article  CAS  Google Scholar 

  6. Xie J, Wang Y, Liu W, Yin X, Chen L, Zou Y, Diwu J, Chai Z, Albrecht-Schmitt TE, Liu G, Wang S. Angew Chem Int Ed, 2017, 56: 7500–7504

    Article  CAS  Google Scholar 

  7. Suresh A, Srinivasan TG, Rao PRV. Solvent Extr Ion Exch, 1994, 12: 727–744

    Article  CAS  Google Scholar 

  8. Kraus KA, Moore GE, Nelson F. J Am Chem Soc, 1956, 78: 2692–2695

    Article  CAS  Google Scholar 

  9. Tang Y, Reeder RJ. Geochim Cosmochim Acta, 2009, 73: 2727–2743

    Article  CAS  Google Scholar 

  10. Zhu L, Xiao C, Dai X, Li J, Gui D, Sheng D, Chen L, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S. Environ Sci Technol Lett, 2017, 4: 316–322

    Article  CAS  Google Scholar 

  11. Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendorf S. Environ Sci Technol, 2003, 37: 1850–1858

    Article  CAS  Google Scholar 

  12. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S. Nat Commun, 2017, 8: 15369

    Article  CAS  Google Scholar 

  13. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  Google Scholar 

  14. Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Hobiny A, Alsaedi A, Wang X. Chem Eng J, 2016, 287: 448–455

    Article  CAS  Google Scholar 

  15. Zhang R, Chen C, Li J, Wang X. J Colloid Interface Sci, 2015, 460: 237–246

    Article  CAS  Google Scholar 

  16. Sylwester ER, Hudson EA, Allen PG. Geochim Cosmochim Acta, 2000, 64: 2431–2438

    Article  CAS  Google Scholar 

  17. Zeng H, Singh A, Basak S, Ulrich KU, Sahu M, Biswas P, Catalano JG, Giammar DE. Environ Sci Technol, 2009, 43: 1373–1378

    Article  CAS  Google Scholar 

  18. Mellah A, Chegrouche S, Barkat M. J Colloid Interface Sci, 2006, 296: 434–441

    Article  CAS  Google Scholar 

  19. Kumar S, Loganathan VA, Gupta RB, Barnett MO. J Environ Manage, 2011, 92: 2504–2512

    Article  CAS  Google Scholar 

  20. Shao D, Jiang Z, Wang X, Li J, Meng Y. J Phys Chem B, 2009, 113: 860–864

    Article  CAS  Google Scholar 

  21. Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X. Environ Sci Technol, 2016, 50: 4459–4467

    Article  CAS  Google Scholar 

  22. Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R. Chem Mater, 2003, 15: 3300–3307

    Article  CAS  Google Scholar 

  23. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S. J Hazard Mater, 2011, 190: 442–450

    Article  CAS  Google Scholar 

  24. Jiang H, Ma J, Li C. Adv Mater, 2012, 24: 4197–4202

    Article  CAS  Google Scholar 

  25. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T. J Am Chem Soc, 2010, 132: 552–557

    Article  CAS  Google Scholar 

  26. Liu R, Zhang Y, Zhao X, Agarwal A, Mueller LJ, Feng P. J Am Chem Soc, 2010, 132: 1500–1501

    Article  CAS  Google Scholar 

  27. Li C. Catal Rev, 2004, 46: 419–492

    Article  CAS  Google Scholar 

  28. Kruk M, Jaroniec M, Kim TW, Ryoo R. Chem Mater, 2003, 15: 2815–2823

    Article  CAS  Google Scholar 

  29. Han YJ, Kim JM, Stucky GD. Chem Mater, 2000, 12: 2068–2069

    Article  CAS  Google Scholar 

  30. Schumacher K, Grü n M, Unger KK. Microporous Mesoporous Mater, 1999, 27: 201–206

    Article  CAS  Google Scholar 

  31. Wu Z, Webley PA, Zhao D. Langmuir, 2010, 26: 10277–10286

    Article  CAS  Google Scholar 

  32. Zhuang X, Wan Y, Feng C, Shen Y, Zhao D. Chem Mater, 2009, 21: 706–716

    Article  CAS  Google Scholar 

  33. Hartmann M, Vinu A, Chandrasekar G. Chem Mater, 2005, 17: 1169–1176

    Google Scholar 

  34. Vinu A, Miyahara M, Sivamurugan V, Mori T, Ariga K. J Mater Chem, 2005, 15: 5122–5127

    Article  CAS  Google Scholar 

  35. Silva R, Voiry D, Chhowalla M, Asefa T. J Am Chem Soc, 2013, 135: 7823–7826

    Article  CAS  Google Scholar 

  36. Ren X, Li J, Tan X, Shi W, Chen C, Shao D, Wen T, Wang L, Zhao G, Sheng G, Wang X. Environ Sci Technol, 2014, 48: 5493–5500

    Article  CAS  Google Scholar 

  37. Stankovich S, Piner RD, Nguyen SBT, Ruoff RS. Carbon, 2006, 44: 3342–3347

    Article  CAS  Google Scholar 

  38. Sun Y, Wang Q, Chen C, Tan X, Wang X. Environ Sci Technol, 2012, 46: 6020–6027

    Article  CAS  Google Scholar 

  39. Chen H, Wang X, Li J, Wang X. J Mater Chem A, 2015, 3: 6073–6081

    Article  CAS  Google Scholar 

  40. Wu Z, Li W, Webley PA, Zhao D. Adv Mater, 2012, 24: 485–491

    Article  CAS  Google Scholar 

  41. Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J. Appl Surf Sci, 2014, 320: 10–20

    Article  CAS  Google Scholar 

  42. Sun Y, Shao D, Chen C, Yang S, Wang X. Environ Sci Technol, 2013, 47: 9904–9910

    Article  CAS  Google Scholar 

  43. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Li Q. Chem Eng J, 2012, 198-199: 246–253

    Article  CAS  Google Scholar 

  44. Grenthe I, Fugar J, Konings RJM, Lemire R, Muller AB, Nguyen TC, Wanner H. Chemical Thermodynamics of Uranium. Amsterdam: North-Holland, 1992

    Google Scholar 

  45. Wen T, Wang X, Wang J, Chen Z, Li J, Hu J, Hayat T, Alsaedi A, Grambow B, Wang X. Inorg Chem Front, 2016, 3: 1227–1235

    Article  CAS  Google Scholar 

  46. Dong W, Brooks SC. Environ Sci Technol, 2006, 40: 4689–4695

    Article  CAS  Google Scholar 

  47. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X. Dalton Trans, 2012, 41: 6182–6188

    Article  CAS  Google Scholar 

  48. Sprynskyy M, Kovalchuk I, Buszewski B. J Hazard Mater, 2010, 181: 700–707

    Article  CAS  Google Scholar 

  49. Lim SF, Zheng YM, Zou SW, Chen JP. Environ Sci Technol, 2008, 42: 2551–2556

    Article  CAS  Google Scholar 

  50. Manos MJ, Kanatzidis MG. J Am Chem Soc, 2012, 134: 16441–16446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91326202, 21577032), the Fundamental Research Funds for the Central Universities (JB2015001, JB2017057), the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions. X. Wang acknowledges the CAS Interdisciplinary Innovation Team of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wen or Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, X., Chen, Z. et al. Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Sci. China Chem. 61, 281–293 (2018). https://doi.org/10.1007/s11426-017-9132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9132-7

Keywords

Navigation