Skip to main content
Log in

Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two atom-precise silver nanoclusters [Ag25Cl2(Tab)14(PhCOO)11(DMF)4](PF6)12 (Ag25, DMF=N,N-dimethylformamide) and [Ag26Cl2(Tab)14(PhCOO)13(DMAc)4](PF6)11(Ag26, DMAc=N,N-dimethylacetamide) were synthesized based on the electrically neutral thiolate protective ligand, 4-(trimethylammonio)benzenethiolate (Tab). The weak Ag-S interaction in Tab-protected silver nanoclusters allows to insert or leave a single silver atom in the Ag-S skeleton through solvent-trigger core fragmentation and re-arrangement, thereby realizing the reversible conversion of Ag25 and Ag26 for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Jin R, Zeng C, Zhou M, Chen Y. Chem Rev, 2016, 116: 10346–10413

    Article  CAS  Google Scholar 

  2. Fuhr O, Dehnen S, Fenske D. Chem Soc Rev, 2013, 42: 1871–1906

    Article  CAS  Google Scholar 

  3. Lyu D, Li J, Wang X, Guo W, Wang E. Anal Chem, 2019, 91: 2050–2057

    Article  CAS  Google Scholar 

  4. Tao Y, Li M, Ren J, Qu X. Chem Soc Rev, 2015, 44: 8636–8663

    Article  CAS  Google Scholar 

  5. Corrigan JF, Fuhr O, Fenske D. Adv Mater, 2009, 21: 1867–1871

    Article  CAS  Google Scholar 

  6. Han S, Zhang Z, Li S, Qi L, Xu G. Sci China Chem, 2016, 59: 794–801

    Article  CAS  Google Scholar 

  7. Xie YP, Jin JL, Duan GX, Lu X, Mak TCW. Coord Chem Rev, 2017, 331: 54–72

    Article  CAS  Google Scholar 

  8. Li XY, Su HF, Yu K, Tan YZ, Wang XP, Zhao YQ, Sun D, Zheng LS. Nanoscale, 2015, 7: 8284–8288

    Article  CAS  Google Scholar 

  9. Wang QM, Lin YM, Liu KG. Acc Chem Res, 2015, 48: 1570–1579

    Article  CAS  Google Scholar 

  10. Li S, Du XS, Li B, Wang JY, Li GP, Gao GG, Zang SQ. J Am Chem Soc, 2018, 140: 594–597

    Article  CAS  Google Scholar 

  11. Yang H, Yan J, Wang Y, Su H, Gell L, Zhao X, Xu C, Teo BK, Häkkinen H, Zheng N. J Am Chem Soc, 2017, 139: 31–34

    Article  CAS  Google Scholar 

  12. Zhang SS, Alkan F, Su HF, Aikens CM, Tung CH, Sun D. J Am Chem Soc, 2019, 141: 4460–4467

    Article  CAS  Google Scholar 

  13. Wu T, Yin D, Hu X, Yang B, Liu H, Xie YP, Liu SX, Ma L, Gao GG. Nanoscale, 2019, 11: 16293–16298

    Article  CAS  Google Scholar 

  14. Duan GX, Han J, Yang BZ, Xie YP, Lu X. Nanoscale, 2020, 12: 1617–1622

    Article  CAS  Google Scholar 

  15. Cho S, Jeon Y, Lee S, Kim J, Kim TH. Chem Eur J, 2015, 21: 1439–1443

    Article  CAS  Google Scholar 

  16. Guan ZJ, Hu F, Li JJ, Wen ZR, Lin YM, Wang QM. J Am Chem Soc, 2020, 142: 2995–3001

    Article  CAS  Google Scholar 

  17. Kamei Y, Shichibu Y, Konishi K. Angew Chem Int Ed, 2011, 50: 7442–7445

    Article  CAS  Google Scholar 

  18. Li Y, Cheng H, Yao T, Sun Z, Yan W, Jiang Y, Xie Y, Sun Y, Huang Y, Liu S, Zhang J, Xie Y, Hu T, Yang L, Wu Z, Wei S. J Am Chem Soc, 2012, 134: 17997–18003

    Article  CAS  Google Scholar 

  19. Liu H, Song CY, Huang RW, Zhang Y, Xu H, Li MJ, Zang SQ, Gao GG. Angew Chem Int Ed, 2016, 55: 3699–3703

    Article  CAS  Google Scholar 

  20. Wang Z, Su HF, Tung CH, Sun D, Zheng LS. Nat Commun, 2018, 9: 4407

    Article  Google Scholar 

  21. Xia N, Yuan J, Liao L, Zhang W, Li J, Deng H, Yang J, Wu Z. J Am Chem Soc, 2020, 142: 12140–12145

    Article  CAS  Google Scholar 

  22. Yao Q, Fung V, Sun C, Huang S, Chen T, Jiang DE, Lee JY, Xie J. Nat Commun, 2018, 9: 1979

    Article  Google Scholar 

  23. Jansen M. Angew Chem Int Ed, 1987, 26: 1098–1110

    Article  Google Scholar 

  24. Schmidbaur H, Schier A. Angew Chem Int Ed, 2015, 54: 746–784

    Article  CAS  Google Scholar 

  25. Wang ZY, Wang MQ, Li YL, Luo P, Jia TT, Huang RW, Zang SQ, Mak TCW. J Am Chem Soc, 2018, 140: 1069–1076

    Article  CAS  Google Scholar 

  26. Kang X, Huang L, Liu W, Xiong L, Pei Y, Sun Z, Wang S, Wei S, Zhu M. Chem Sci, 2019, 10: 8685–8693

    Article  CAS  Google Scholar 

  27. Li S, Wang ZY, Gao GG, Li B, Luo P, Kong YJ, Liu H, Zang SQ. Angew Chem Int Ed, 2018, 57: 12775–12779

    Article  CAS  Google Scholar 

  28. Yuan SF, Guan ZJ, Liu WD, Wang QM. Nat Commun, 2019, 10: 4032

    Article  Google Scholar 

  29. Hu F, Li JJ, Guan ZJ, Yuan SF, Wang QM. Angew Chem Int Ed, 2020, 59: 5312–5315

    Article  CAS  Google Scholar 

  30. Alhilaly MJ, Bootharaju MS, Joshi CP, Besong TM, Emwas AH, Juarez-Mosqueda R, Kaappa S, Malola S, Adil K, Shkurenko A, Häkkinen H, Eddaoudi M, Bakr OM. J Am Chem Soc, 2016, 138: 14727–14732

    Article  CAS  Google Scholar 

  31. Bao SJ, Liu CY, Zhang M, Chen XR, Yu H, Li HX, Braunstein P, Lang JP. Coord Chem Rev, 2019, 397: 28–53

    Article  CAS  Google Scholar 

  32. Chen XR, Yang L, Tan YL, Yu H, Ni CY, Niu Z, Lang JP. Chem Commun, 2020, 56: 3649–3652

    Article  CAS  Google Scholar 

  33. Alhilaly MJ, Huang RW, Naphade R, Alamer B, Hedhili MN, Emwas AH, Maity P, Yin J, Shkurenko A, Mohammed OF, Eddaoudi M, Bakr OM. J Am Chem Soc, 2019, 141: 9585–9592

    Article  CAS  Google Scholar 

  34. Liu C, Li T, Abroshan H, Li Z, Zhang C, Kim HJ, Li G, Jin R. Nat Commun, 2018, 9: 744

    Article  Google Scholar 

  35. Sugiuchi M, Shichibu Y, Konishi K. Angew Chem Int Ed, 2018, 57: 7855–7859

    Article  CAS  Google Scholar 

  36. Tian F, Chen R. J Am Chem Soc, 2019, 141: 7107–7114

    Article  CAS  Google Scholar 

  37. Wang Z, Liu JW, Su HF, Zhao QQ, Kurmoo M, Wang XP, Tung CH, Sun D, Zheng LS. J Am Chem Soc, 2019, 141: 17884–17890

    Article  CAS  Google Scholar 

  38. Zeng C, Liu C, Chen Y, Rosi NL, Jin R. J Am Chem Soc, 2014, 136: 11922–11925

    Article  CAS  Google Scholar 

  39. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, van Stryland EW. IEEE J Quantum Electron, 1990, 26: 760–769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871196, 21773163, 21531006), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (KF2021005), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201905).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Yu, Zheng Niu or Jian-Ping Lang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, YL., Yang, L., Yu, TC. et al. Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Sci. China Chem. 64, 948–952 (2021). https://doi.org/10.1007/s11426-020-9952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9952-x

Keywords

Navigation