Skip to main content
Log in

The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) have wide application prospects but also exhibit notable biotoxicity that is tightly associated with macrophages. Macrophages simultaneously act as initiators and defenders in MWCNT-induced organ lesions, and targeting macrophages with MWCNTs may be a potential immunotherapy and oncotherapy approach. This review focuses on the impacts of MWCNTs on macrophages and further discusses the influence of MWCNT characteristics on their bioactivity. Based on existing studies, MWCNTs stimulate macrophage migration, induce secretion of various cytokines and activate inflammatory pathways in macrophages, especially NLRP3-mediated IL-1β production. This inflammatory state, together with the oxidative stress and cell membrane lesions induced by MWCNTs, contributes to decreased phagocytic ability and cell viability, which finally results in cell apoptosis and necrosis. A series of intracellular and systemic components, such as toll-like receptor, high-mobility group box 1, Rho-associated kinases, scavenger receptor and complement components, may be involved in the above-mentioned cell-MWCNT interactions. The characteristics of MWCNTs can influence their bioactivity in macrophages both mechanically and chemically. The size (length and/or diameter), functionalization, purification and even the experimental method can affect the influence of MWCNTs on macrophages, and a better understanding of these MWCNT characteristics may benefit utilization of this nanomaterial in associated nanomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiso, S., Yamazaki, K., Umeda, Y., Asakura, M., Kasai, T., Takaya, M., Toya, T., Koda, S., Nagano, K., Arito, H., et al. (2010). Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male fischer 344 rats. Ind Health 48, 783–795.

    Article  PubMed  CAS  Google Scholar 

  • Al-Jamal, K.T., Nerl, H., Müller, K.H., Ali-Boucetta, H., Li, S., Haynes, P. D., Jinschek, J.R., Prato, M., Bianco, A., Kostarelos, K., et al. (2011). Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3, 2627–2635.

    Article  PubMed  CAS  Google Scholar 

  • Awasthi, K.K., John, P.J., Awasthi, A., and Awasthi, K. (2013). Multi walled carbon nano tubes induced hepatotoxicity in Swiss albino mice. Micron 44, 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Boncel, S., Müller, K.H., Skepper, J.N., Walczak, K.Z., and Koziol, K.K.K. (2011). Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials 32, 7677–7686.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, J.C. (2010). Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thoracic Soc 7, 138–141.

    Article  CAS  Google Scholar 

  • Boyles, M.S.P., Young, L., Brown, D.M., MacCalman, L., Cowie, H., Moisala, A., Smail, F., Smith, P.J.W., Proudfoot, L., Windle, A.H., et al. (2015). Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol In Vitro 29, 1513–1528.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.M., Kinloch, I.A., Bangert, U., Windle, A.H., Walter, D.M., Walker, G.S., Scotchford, C.A., Donaldson, K., and Stone, V. (2007). An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45, 1743–1756.

    Article  CAS  Google Scholar 

  • Brown, D.M., Donaldson, K., and Stone, V. (2010). Nuclear translocation of Nrf2 and expression of antioxidant defence genes in THP-1 cells exposed to carbon nanotubes. J Biomed Nanotechnol 6, 224–233.

    Article  PubMed  CAS  Google Scholar 

  • Bussy, C., Pinault, M., Cambedouzou, J., Landry, M.J., Jegou, P., Mayne-L’hermite, M., Launois, P., Boczkowski, J., and Lanone, S. (2012). Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol 9, 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bussy, C., Hadad, C., Prato, M., Bianco, A., and Kostarelos, K. (2016). Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale 8, 590–601.

    Article  PubMed  CAS  Google Scholar 

  • Cesta, M.F., Ryman-Rasmussen, J.P., Wallace, D.G., Masinde, T., Hurlburt, G., Taylor, A.J., and Bonner, J.C. (2010). Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43, 142–151.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Shen, J., Longhua, G., Chen, Y., and Kim, D.H. (2011). Cellular response of RAW 264.7 to spray-coated multi-walled carbon nanotube films with various surfactants. J Biomed Mater Res 96A, 413–421.

    Article  CAS  Google Scholar 

  • Cheng, C., Müller, K.H., Koziol, K.K.K., Skepper, J.N., Midgley, P.A., Welland, M.E., and Porter, A.E. (2009). Toxicity and imaging of multiwalled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160.

    Article  PubMed  CAS  Google Scholar 

  • De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., and Hart, A.J. (2013). Carbon nanotubes: present and future commercial applications. Science 339, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Deng, X., Xiong, D., Wang, Y., Chen, W., Luan, Q., Zhang, H., Jiao, Z., and Wu, M. (2010). Water soluble multi-walled carbon nanotubes enhance peritoneal macrophage activity in vivo. J Nanosci Nanotech 10, 8663–8669.

    Article  CAS  Google Scholar 

  • Di Giorgio, M.L., Di Bucchianico, S., Ragnelli, A.M., Aimola, P., Santucci, S., and Poma, A. (2011). Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722, 20–31.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., and Alexander, A. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92, 5–22.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, K., Murphy, F.A., Duffin, R., and Poland, C.A. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elgrabli, D., Abella-Gallart, S., Robidel, F., Rogerieux, F., Boczkowski, J., and Lacroix, G. (2008). Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbonnanotubes. Toxicology 253, 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Elgrabli, D., Dachraoui, W., Ménard-Moyon, C., Liu, X.J., Bégin, D., Bégin-Colin, S., Bianco, A., Gazeau, F., and Alloyeau, D. (2015). Carbon nanotube degradation in macrophages: live nanoscale monitoring and understanding of biological pathway. ACS Nano 9, 10113–10124.

    Article  PubMed  CAS  Google Scholar 

  • Ema, M., Masumori, S., Kobayashi, N., Naya, M., Endoh, S., Maru, J., Hosoi, M., Uno, F., Nakajima, M., Hayashi, M., et al. (2013). In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol 33, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Fenoglio, I., Aldieri, E., Gazzano, E., Cesano, F., Colonna, M., Scarano, D., Mazzucco, G., Attanasio, A., Yakoub, Y., Lison, D., et al. (2012). Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 25, 74–82.

    Article  PubMed  CAS  Google Scholar 

  • Fraczek-Szczypta, A., Menaszek, E., Syeda, T.B., Misra, A., Alavijeh, M., Adu, J., and Blazewicz, S. (2012). Effect of MWCNT surface and chemical modification on in vitro cellular response. J Nanopart Res 14, 1181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francis, A.P., Ganapathy, S., Palla, V.R., Murthy, P.B., Ramaprabhu, S., and Devasena, T. (2015). One time nose-only inhalation of MWCNTs: exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats. Toxicol Rep 2, 111–120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funahashi, S., Okazaki, Y., Ito, D., Asakawa, A., Nagai, H., Tajima, M., and Toyokuni, S. (2015). Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells. J Clin Biochem Nutr 56, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, M., Wick, P., Clift, M.J.D., Blank, F., Diener, L., Yan, B., Gehr, P., Krug, H.F., and Rothen-Rutishauser, B. (2012). Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol 9, 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goode, A.E., Gonzalez Carter, D.A., Motskin, M., Pienaar, I.S., Chen, S., Hu, S., Ruenraroengsak, P., Ryan, M.P., Shaffer, M.S.P., Dexter, D.T., et al. (2015). High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells. Biomaterials 70, 57–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grecco, A.C., Paula, R.F., Mizutani, E., Sartorelli, J.C., Milani, A.M., Longhini, A.L., Oliveira, E.C., Pradella, F., Silva, V.D., Moraes, A.S., et al. (2011). Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology 22, 265103.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R., Mehra, N.K., and Jain, N.K. (2014). Fucosylated multiwalled carbon nanotubes for Kupffer cells targeting for the treatment of cytokine-induced liver damage. Pharm Res 31, 322–334.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, R.F.Jr., Buford, M., Xiang, C., Wu, N., and Holian, A. (2012). NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24, 995–1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamilton, R.F., Wu, Z., Mitra, S., Shaw, P.K., and Holian, A. (2013). Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haniu, H., Matsuda, Y., Takeuchi, K., Kim, Y.A., Hayashi, T., and Endo, M. (2010). Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicol Appl Pharmacol 242, 256–262.

    Article  PubMed  CAS  Google Scholar 

  • He, X., Young, S.H., Schwegler-Berry, D., Chisholm, W.P., Fernback, J.E., and Ma, Q. (2011). Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol 24, 2237–2248.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, S., Kanno, S., and Furuyama, A. (2008). Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232, 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, S., Fujitani, Y., Furuyama, A., and Kanno, S. (2012). Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol Appl Pharmacol 259, 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Jain, K.K. (2012). Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin Drug Discov 7, 1029–1037.

    Article  PubMed  CAS  Google Scholar 

  • Jessop, F., and Holian, A. (2015). Extracellular HMGB1 regulates multiwalled carbon nanotube-induced inflammation in vivo. Nanotoxicology 9, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X. (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39, 1378–13-83.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Zhang, H., Wang, Y., Chen, M., Ye, S., Hou, Z., and Ren, L. (2013). Modulation of apoptotic pathways of macrophages by surfacefunctionalized multi-walled carbon nanotubes. PLoS ONE 8, e65756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston, H.J., Hutchison, G.R., Christensen, F.M., Peters, S., Hankin, S., Aschberger, K., and Stone, V. (2010). A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4, 207–246.

    Article  PubMed  CAS  Google Scholar 

  • Kanno, S., Hirano, S., Chiba, S., Takeshita, H., Nagai, T., Takada, M., Sakamoto, K., and Mukai, T. (2015). The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes. Arch Toxicol 89, 73–85.

    Article  PubMed  CAS  Google Scholar 

  • Kateb, B., Van Handel, M., Zhang, L., Bronikowski, M.J., Manohara, H., and Badie, B. (2007). Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 37, S9–S17.

    Article  PubMed  Google Scholar 

  • Kido, T., Tsunoda, M., Kasai, T., Sasaki, T., Umeda, Y., Senoh, H., Yanagisawa, H., Asakura, M., Aizawa, Y., and Fukushima, S. (2014). The increases in relative mRNA expressions of inflammatory cytokines and chemokines in splenic macrophages from rats exposed to multi-walled carbon nanotubes by whole-body inhalation for 13 weeks. Inhal Toxicol 26, 750–758.

    Article  PubMed  CAS  Google Scholar 

  • Klaper, R., Arndt, D., Setyowati, K., Chen, J., and Goetz, F. (2010). Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 100, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Kobzik, L. (1995). Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol 155, 367–376.

    PubMed  CAS  Google Scholar 

  • Kotchey, G.P., Hasan, S.A., Kapralov, A.A., Ha, S.H., Kim, K., Shvedova, A.A., Kagan, V.E., and Star, A. (2012). A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res 45, 1770–1781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumarathasan, P., Breznan, D., Das, D., Salam, M.A., Siddiqui, Y., Mac-Kinnon-Roy, C., Guan, J., de Silva, N., Simard, B., and Vincent, R. (2015). Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells. Nanotoxicology 9, 148–161.

    Article  PubMed  CAS  Google Scholar 

  • Lacerda, L., Russier, J., Pastorin, G., Herrero, M.A., Venturelli, E., Dumortier, H., Al-Jamal, K.T., Prato, M., Kostarelos, K., and Bianco, A. (2012). Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33, 3334–3343.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.K., Sayers, B.C., Chun, K.S., Lao, H.C., Shipley-Phillips, J.K., Bonner, J.C., and Langenbach, R. (2012). Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and-independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol 9, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H., Tan, X.Q., Yan, L., Zeng, B., Meng, J., Xu, H.Y., and Cao, J.M. (2017). Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway. Sci Rep 7, 226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, D., Wang, L., Wang, Z., and Cuschieri, A. (2012). Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res Lett 7, 361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, M., Deng, X., Shen, X., Dong, L., and Liu, Y. (2012). Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages. J Nanosci Nanotech 12, 274–283.

    Article  CAS  Google Scholar 

  • Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A.O., van Ravenzwaay, B., and Landsiedel, R. (2009). Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112, 468–481.

    Article  PubMed  CAS  Google Scholar 

  • Meng, J., Yang, M., Jia, F., Kong, H., Zhang, W., Wang, C., Xing, J., Xie, S., and Xu, H. (2010). Subcutaneous injection of water-soluble multiwalled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 21, 145104.

    Article  PubMed  CAS  Google Scholar 

  • Meng, J., Li, X., Wang, C., Guo, H., Liu, J., and Xu, H. (2015). Carbon nanotubes activate macrophages into a M1/M2 mixed status: recruiting naïve macrophages and supporting angiogenesis. ACS Appl Mater Interf 7, 3180–3188.

    Article  CAS  Google Scholar 

  • Mercer, R.R., Hubbs, A.F., Scabilloni, J.F., Wang, L., Battelli, L.A., Friend, S., Castranova, V., and Porter, D.W. (2011). Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8, 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercer, R.R., Scabilloni, J.F., Hubbs, A.F., Battelli, L.A., McKinney, W., Friend, S., Wolfarth, M.G., Andrew, M., Castranova, V., and Porter, D. W. (2013). Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 10, 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meunier, E., Coste, A., Olagnier, D., Authier, H., Lefèvre, L., Dardenne, C., Bernad, J., Béraud, M., Flahaut, E., and Pipy, B. (2012). Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine 8, 987–995.

    Article  PubMed  CAS  Google Scholar 

  • Møller, P., Christophersen, D.V., Jensen, D.M., Kermanizadeh, A., Roursgaard, M., Jacobsen, N.R., Hemmingsen, J.G., Danielsen, P.H., Cao, Y., Jantzen, K., et al. (2014). Role of oxidative stress in carbon nanotubegenerated health effects. Arch Toxicol 88, 1939–1964.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, Y., Hirohashi, M., Ogami, A., Oyabu, T., Myojo, T., Todoroki, M., Yamamoto, M., Hashiba, M., Mizuguchi, Y., Lee, B.W., et al. (2012). Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology 6, 587–599.

    Article  PubMed  CAS  Google Scholar 

  • Mossman, B.T., and Churg, A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157, 1666–1680.

    Article  PubMed  CAS  Google Scholar 

  • Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B., and Lison, D. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207, 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, F.A., Schinwald, A., Poland, C.A., and Donaldson, K. (2012). The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify proinflammatory responses in mesothelial cells. Part Fibre Toxicol 9, 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai, H., Okazaki, Y., Hwu Chew, S., Misawa, N., Yamashita, Y., Akatsuka, S., Ishihara, T., Yamashita, K., Yoshikawa, Y., Yasui, H., et al. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA 108, e1330–E1338.

    Article  PubMed  Google Scholar 

  • Palomäki, J., Välimäki, E., Sund, J., Vippola, M., Clausen, P.A., Jensen, K. A., Savolainen, K., Matikainen, S., and Alenius, H. (2011). Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861–6870.

    Article  PubMed  CAS  Google Scholar 

  • Palomäki, J., Sund, J., Vippola, M., Kinaret, P., Greco, D., Savolainen, K., Puustinen, A., and Alenius, H. (2015). A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes. Nanotoxicology 9, 719–728.

    Article  PubMed  CAS  Google Scholar 

  • Pondman, K.M., Sobik, M., Nayak, A., Tsolaki, A.G., Jäkel, A., Flahaut, E., Hampel, S., Ten Haken, B., Sim, R.B., and Kishore, U. (2014). Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine 10, 1287–1299.

    Article  PubMed  CAS  Google Scholar 

  • Pondman, K.M., Pednekar, L., Paudyal, B., Tsolaki, A.G., Kouser, L., Khan, H.A., Shamji, M.H., Ten Haken, B., Stenbeck, G., Sim, R.B., et al. (2015). Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes. Nanomedicine 11, 2109–2118.

    Article  PubMed  CAS  Google Scholar 

  • Pulskamp, K., Diabaté, S., and Krug, H.F. (2007). Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168, 58–74.

    Article  PubMed  CAS  Google Scholar 

  • Qu, C., Wang, L., He, J., Tan, J., Liu, W., Zhang, S., Zhang, C., Wang, Z., Jiao, S., Liu, S., et al. (2012). Carbon nanotubes provoke inflammation by inducing the pro-inflammatory genes IL-1β and IL-6. Gene 493, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Rydman, E.M., Ilves, M., Koivisto, A.J., Kinaret, P.A.S., Fortino, V., Savinko, T.S., Lehto, M.T., Pulkkinen, V., Vippola, M., Hämeri, K.J., et al. (2014). Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol 11, 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saïd-Sadier, N., and Ojcius, D.M. (2012). Alarmins, inflammasomes and immunity. Biomed J 35, 437–449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito, N., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Hara, K., Ogiwara, N., Nakamura, K., Ishigaki, N., Kato, H., et al. (2009). Carbon nanotubes: biomaterial applications. Chem Soc Rev 38, 1897–1903.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Kohgo, T., Tamura, K., Akasaka, T., Uo, M., et al. (2005). Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 1, 176–182.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Yokoyama, A., Nodasaka, Y., Kohgo, T., Motomiya, K., Matsumoto, H., Nakazawa, E., Numata, T., Zhang, M., Yudasaka, M., et al. (2013). Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci Rep 3, 2516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu, K., Uchiyama, A., Yamashita, M., Hirose, A., Nishimura, T., and Oku, N. (2013). Biomembrane damage caused by exposure to multiwalled carbon nanotubes. J Toxicol Sci 38, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Shipkowski, K.A., Taylor, A.J., Thompson, E.A., Glista-Baker, E.E., Sayers, B.C., Messenger, Z.J., Bauer, R.N., Jaspers, I., and Bonner, J.C. (2014). An allergic lung microenvironment suppresses carbon nanotube-induced inflammasome activation via STAT6-dependent inhibition of caspase-1. PLoS ONE 10, e0128888.

    Article  CAS  Google Scholar 

  • Sun, B., Wang, X., Ji, Z., Wang, M., Liao, Y.P., Chang, C.H., Li, R., Zhang, H., Nel, A.E., and Xia, T. (2015). NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small 11, 2087–2097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sweeney, S., Berhanu, D., Misra, S.K., Thorley, A.J., Valsami-Jones, E., and Tetley, T.D. (2014). Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. Carbon 78, 26–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabet, L., Bussy, C., Setyan, A., Simon-Deckers, A., Rossi, M.J., Boczkowski, J., and Lanone, S. (2011). Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part Fibre Toxicol 8, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor, A.J., McClure, C.D., Shipkowski, K.A., Thompson, E.A., Hussain, S., Garantziotis, S., Parsons, G.N., and Bonner, J.C. (2014). Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS ONE 9, e106870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thayer, A.M. (2007). Carbon nanotubes by the metric ton. Chem Eng News 85, 29–35.

    Article  Google Scholar 

  • Treumann, S., Ma-Hock, L., Gröters, S., Landsiedel, R., and van Ravenzwaay, B. (2013). Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats. Toxicol Sci 134, 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Umeda, Y., Kasai, T., Saito, M., Kondo, H., Toya, T., Aiso, S., Okuda, H., Nishizawa, T., and Fukushima, S. (2013). Two-week toxicity of multiwalled carbon nanotubes by whole-body inhalation exposure in rats. J Toxicol Pathol 26, 131–140.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Berlo, D., Wilhelmi, V., Boots, A.W., Hullmann, M., Kuhlbusch, T.A. J., Bast, A., Schins, R.P.F., and Albrecht, C. (2014). Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88, 1725–1737.

    Article  PubMed  CAS  Google Scholar 

  • VanHandel, M., Alizadeh, D., Zhang, L., Kateb, B., Bronikowski, M., Manohara, H., and Badie, B. (2009). Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 208, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Jia, G., Wang, H., Nie, H., Yan, L., Deng, X.Y., and Wang, S. (2009). Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol 9, 3025–3033.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Xia, T., Addo Ntim, S., Ji, Z., Lin, S., Meng, H., Chung, C.H., George, S., Zhang, H., Wang, M., et al. (2011). Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5, 9772–9787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X., Guo, J., Chen, T., Nie, H., Wang, H., Zang, J., Cui, X., and Jia, G. (2012). Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro 26, 799–806.

    Article  PubMed  CAS  Google Scholar 

  • Wörle-Knirsch, J.M., Pulskamp, K., and Krug, H.F. (2006). Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett 6, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  • Xia, T., Hamilton Jr., R.F., Bonner, J.C., Crandall, E.D., Elder, A., Fazlollahi, F., Girtsman, T.A., Kim, K., Mitra, S., Ntim, S.A., et al. (2013). Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS nano GO consortium. Environ Health Perspect 121, 683–690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, J., Futakuchi, M., Shimizu, H., Alexander, D.B., Yanagihara, K., Fukamachi, K., Suzui, M., Kanno, J., Hirose, A., Ogata, A., et al. (2012). Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci 103, 2045–2050.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Meng, J., Cheng, X., Lei, J., Guo, H., Zhang, W., Kong, H., and Xu, H. (2012). Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics 2, 258–270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, S., Wang, Y., Jiao, F., Zhang, H., Lin, C., Wu, Y., and Zhang, Q. (2011). The role of NADPH oxidase in multi-walled carbon nanotubes-induced oxidative stress and cytotoxicity in human macrophages. J Nanosci Nanotech 11, 3773–3781.

    Article  CAS  Google Scholar 

  • Ye, S., Jiang, Y., Zhang, H., Wang, Y., Wu, Y., Hou, Z., and Zhang, Q. (2012). Multi-walled carbon nanotubes induce apoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway. J Nanosci Nanotechnol 12, 2101–2112.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, T., Tang, M., Kong, L., Li, H., Zhang, T., Zhang, S., Xue, Y., and Pu, Y. (2012). Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW264.7 mouse macrophages. J Hazard Mater 219–220, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, T., Tang, M., Kong, L., Li, H., Zhang, T., Xue, Y., and Pu, Y. (2015). Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. J Hazard Mater 284, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Allen, B.L., and Star, A. (2011). Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A 115, 9536–9544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, L., Schrand, A.M., Voevodin, A.A., Chang, D.W., Dai, L., and Hussain, S.M. (2011). Assessment of human lung macrophages after exposure to multi-walled carbon nanotubes part I. cytotoxicity. Nanosci Nanotechnol Lett 3, 88–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-004) and the National Key Research and Development Project from the Ministry of Science and Technology, China (2017YFA0205500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cao, J. The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics. Sci. China Life Sci. 61, 1333–1351 (2018). https://doi.org/10.1007/s11427-017-9242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9242-3

Keywords

Navigation