Skip to main content
Log in

Numerical simulation of Martian historical dynamo: Impact of the Rayleigh number on the dynamo state

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

The observed Mars remnant magnetism suggests that there was an active dynamo in the Martian core. We use the MoSST core dynamics model to simulate the Martian historical dynamo, focusing on the variation of the dynamo states with the Rayleigh number Ra (a non-dimensional parameter describing the buoyancy force in the core). Our numerical results show that the mean field length scale does not vary monotonically with the Rayleigh number, and the field morphology at the core mantle boundary changes with Rayleigh number. In particular, it drifts westward with a speed decreasing with Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cisowski S M. Magnetic studies of Shergotty and other SNC meteorites. Geochim Cosmochim Acta, 1985, 50: 1043–1048

    Article  Google Scholar 

  2. Curtis S A, Ness N F. Remanent magnetism at Mars. Geophys Res Lett, 1988, 15(8): 737–739

    Article  Google Scholar 

  3. Leweling M, Spohn T. Mars: A magnetic field due to themoremanence. Planet Space Sci, 1997, 45: 1389–1400

    Article  Google Scholar 

  4. Acunä M H, Connerney J E P, Wasilewskit P, et al. The Mars observer magnetic fields investigation. J Geophys Res, 1992, 97: 7799–7814

    Google Scholar 

  5. Acunä M H, Connerney J E P, Wasilewsk P, et al. Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J Geophys Res, 2001, 106(10): 23403–23417

    Article  Google Scholar 

  6. Acunä M H, Connerney J E P, Wasilewsk P, et al. Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission. Science, 1998, 279: 1676–1680

    Article  Google Scholar 

  7. Acunä M H, Connerney J E P, Ness N F, et al. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 1999, 284: 790–793

    Article  Google Scholar 

  8. Connerney J E P, Acunä M H, Wasilewski P J, et al. Magnetic lineations in the ancient crust of Mars. Science, 1999, 284: 794–798

    Article  Google Scholar 

  9. Langel R A, Phillips J D, Horner R J. Initial scalar magnetic anomaly map from Magsat. Geophys Res Lett, 1982, 9: 269–272

    Article  Google Scholar 

  10. Purucker M D, Ravat T J, Sabaka C, et al. An altitude-normalized magnetic map of Mars and its interpretation. Geophys Res Lett, 2000, 27: 2449–2452

    Article  Google Scholar 

  11. Purucker M, Clark D. Exploration geophysics on Mars: Lessons from magnetics. Leading Edge, 2000, 19: 484–487

    Article  Google Scholar 

  12. Purucker M, Langlais B, Mandea M. Interpretation of a magnetic map of the Valles Marineris region. Mars, Extended Abstract from the 32nd Lunar and Planetary Conference, Houston, Texas, 2001

  13. Larmor J. How could a rotating body such as the Sun become a magnet. Rep Br Assoc Adv Sci, 1919, 159–160

  14. Merrill R T, McElhinney M W, McFadden P L. The Magnetic Field of the Earth. New York: Academic Press, 1998

    Google Scholar 

  15. Elasser W M. Induction effects in terrestrial magnetism. Theory Phys Rev, 1946, 69: 106–116

    Google Scholar 

  16. Bullard E C, Gellman H. Homogeneous dynamo and terrestrial magnetism. Phil Trans R Soc Lond, 1954, 247: 213–279

    Article  Google Scholar 

  17. Schubert G, Russell C T, Moore W B. Timing of the Martian dynamo. Nature, 2000, 408: 666–667

    Article  Google Scholar 

  18. Busse F H. Homogeneous dynamos in planetary cores and in the laboratory. Annu Rev Fluid Mech, 2000, 32: 383–408

    Article  Google Scholar 

  19. Roberts P H, Glatzmaier G A. Geodynamo theory and simulations. Rev Mod Phys, 2000, 72: 1081–1123

    Article  Google Scholar 

  20. Xu W Y. Laboratory experiments on geodynamo. Prog Geophys, 2005, 9: 698–704

    Google Scholar 

  21. Cowling T G. The magnetic field of sunspots. Mort Not R Astron Soc, 1934, 94: 39–48

    Google Scholar 

  22. Kuang W J, Bloxham J. Numerical dynamo model in an Earth-like dynamical regime. Nature, 1997, 389: 371–374

    Article  Google Scholar 

  23. Kuang W J, Chao B F. Topographic core-mantle coupling in geodynamo modeling. Geophys Res Lett, 2001, 28(9): 1871–1874

    Article  Google Scholar 

  24. Kuang W J. Force balances and convective state in the Earth’s core. Phys Earth Planet Inter, 1999, 116: 65–79

    Article  Google Scholar 

  25. Kuang W J, Bloxham J. Numerical modeling of magnetiohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action. J Comp Phys, 1999, 153: 51–81

    Article  Google Scholar 

  26. Kuang W J, Bloxham J. On the dynamics of topographical core-mantle coupling. Phys Earth Planet Inter, 1997, 99: 289–294

    Article  Google Scholar 

  27. Glatzmaier G A, Roberts P H. A three dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 1995, 377: 203–209

    Article  Google Scholar 

  28. Glatzmaier G A, Roberts P H. three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planets Inter, 1995, 91: 63–75

    Article  Google Scholar 

  29. Glatzmaier G A, Roberts P H. An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D, 1996, 97: 81–94

    Article  Google Scholar 

  30. Stevenson D J. Mars’ core and magnetism. Nature, 2001, 412: 214–219

    Article  Google Scholar 

  31. Righter K, Hervig R L, Kring D A. Accretion and core formation on Mars: Molybdenum contents of melt inclusion glasses in three SNC meteorites. Geochim Cosmochim Acta, 1998, 62: 2167–2177

    Article  Google Scholar 

  32. Lee D C, Halliday A N. Core formation on Mars and differentiated asteroids. Nature, 1997, 388: 854–857

    Article  Google Scholar 

  33. Yoder C F, Konopliv A S, Yuan D N, et al. Fluid core size of Mars from detection of the solar tide. Science, 2003, 300: 299–303

    Article  Google Scholar 

  34. Kuang W, Jiang W. Numerical simulation of Historical Martian Dynamo: Onset and Annihilation of the Dynamo Action. 38th Lunar and Planetary Science Conference, Texas. LPI contribution No 1338, 2007. 2212

  35. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. New York: Dover, 1981

    Google Scholar 

  36. Greenspan H P. The Theory of Rotating Fluids. Cambridge: Cambridge University Press, 1968

    Google Scholar 

  37. Roberts P H, Soward A M, eds. Magnetoconvection in a rapidly rotating fluid. In: Rotating Fluids in Geophysics. London: Academic Press, 1978. 421–435

  38. Jault D. Model z by computation and Taylor’s condition. Geophys Astrophys Fluid Dyn, 1995, 79: 99–124

    Article  Google Scholar 

  39. Taylor J B. The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc R Soc London Ser A-Math Phys Eng Sci, 1963, 274: 274–283

    Article  Google Scholar 

  40. Fautrelle Y, Childress S. Convective dynamos with intermediate and strong fields. Geophys Astrophys Fluid Dyn, 1982, 22: 235–279

    Article  Google Scholar 

  41. Williams J P, Nimmo F. Thermal evolution of the Martian core: Implications for an early dynamo. Geology, 2004, 32: 97–100

    Article  Google Scholar 

  42. Bullard E C, Freedman C H, et al. The westward drift of the Earth’s magnetic field. Phil Trans R Soc Lond, 1950, 243: 67–92

    Article  Google Scholar 

  43. Shi R P, Pan Y X, Zhu R X. New Cretaceous Palaeointensity data and constrains on geodynamic. Sci China Ser D-Earth Sci, 2002, 45(10): 931–938

    Article  Google Scholar 

  44. Choblet G, Sotin C. Early transient cooling of Mars. Geophys Res Lett, 2001, 28: 3035–3038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianYuan Wang.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 40328006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Kuang, W. & Ma, S. Numerical simulation of Martian historical dynamo: Impact of the Rayleigh number on the dynamo state. Sci. China Ser. D-Earth Sci. 52, 402–410 (2009). https://doi.org/10.1007/s11430-009-0034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-009-0034-y

Keywords

Navigation