Skip to main content
Log in

The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since ~3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an “infant” stage of the geomorphological cycle. However, these drainages were not formed until 1.7–1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an “old stage” landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ab’Sáber A N. 2000. Summit surfaces in Brazil. Rev Bras Geociênc, 30: 515–516

    Google Scholar 

  • Amano K, Taira A. 1992. Two-phase uplift of Higher Himalayas since 17 Ma. Geology, 20: 391–394

    Article  Google Scholar 

  • An Z S, Zhang P Z, Wang E C, et al. 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene (in Chinese). Quat Sci, 26: 678–693

    Google Scholar 

  • Burbank D W, Derry L A, France-Lanord C. 1993. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364: 48–50

    Article  Google Scholar 

  • Burbank D W, Johnson G D. 1982. Intermontane-basin development in the past 4 Myr in the north-west Himalaya. Nature, 298: 432–436

    Article  Google Scholar 

  • Burbank D W, Reynolds R G. 1984. Sequential late Cenozoic structural disruption of the northern Himalayan foredeep. Nature, 311: 114–118

    Article  Google Scholar 

  • Cane M A, Molnar P. 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature, 411: 157–162

    Article  Google Scholar 

  • Cerling T E, Wang Y, Quade J. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361: 344–345

    Article  Google Scholar 

  • Chai D H, Chen T Y. 2000. A New Outlook on the Earth from Continental Drift to Plate Tectonics. Taiyuan: Shanxi Science and Technology Press. 193

    Google Scholar 

  • Chen F B. 1996. Second discussion on the Hengduan Movement (in Chinese). Volcanol Miner Res, 17: 14–22

    Google Scholar 

  • Chen M X. 1947. Physiographic stages of Central Gansu (in Chinese). Geol Rev, 12: 545–556

    Google Scholar 

  • Clark M K, House M, Royden L, et al. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33: 525–528

    Article  Google Scholar 

  • Clark M K, Royden L H, Whipple K X, et al. 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J Geophys Res, 111: F03002

  • Coleman M, Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49–52

    Article  Google Scholar 

  • Craddock W H, Kirby E, Harkins N W, et al. 2010. Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geosci, 3: 209–213

    Article  Google Scholar 

  • Cui Z J, Gao Q Z, Liu G N, et al. 1996. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau. Sci China Ser D-Earth Sci, 39: 391–400

    Google Scholar 

  • Dai S, Fang X M, Dupont-Nivet G, et al. 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J Geophys Res, 111: B11102

  • Dai S, Fang X M, Song C H, et al. 2005. Early tectonic uplift of the northern Tibetan Plateau. Chin Sci Bull, 50: 1642–1652

    Article  Google Scholar 

  • Davis W M. 1899. The geographical cycle. Geogr J, 14: 481–504

    Article  Google Scholar 

  • DeCelles P, Kapp P, Quade J, et al. 2011. Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geol Soc Am Bull, 123: 1337–1362

    Article  Google Scholar 

  • Deng T. 2004. Evolution of the late Cenozoic mammalian faunas in the Linxia Basin and its background relevant to the uplift of the Qinghai-Xizang Plateau (in Chinese). Quat Sci, 24: 413–420

    Google Scholar 

  • Deng T, Li Q, Tseng Z J, et al. 2012. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 109: 7374–7378

    Article  Google Scholar 

  • Deng T, Wang X M, Fortelius M, et al. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 333: 1285–1288

    Article  Google Scholar 

  • Fang X M, Zhao Z J, Li J J, et al. 2005. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. Sci China Ser D-Earth Sci, 48: 1040–1051

    Article  Google Scholar 

  • Feng Y, He D M, Gan S. 2008. The main factors to effect the ecological changes in Nujiang drainage basin of longitudinal range Gorge region (in Chinese). J Mountain Sci, 26: 538–545

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol, 159: 3–30

    Article  Google Scholar 

  • Garzanti E, Vezzoli G, Andò S, et al. 2005. Petrology of Indus River sands: A key to interpret erosion history of the Western Himalayan Syntaxis. Earth Planet Sci Lett, 229: 287–302

    Article  Google Scholar 

  • Grubb P J. 1971. Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature, 229: 44–45

    Article  Google Scholar 

  • Gunnell Y, Calvet M, Brichau S, et al. 2009. Low long-term erosion rates in high-energy mountain belts: Insights from thermo- and biochronology in the Eastern Pyrenees. Earth Planet Sci Lett, 278: 208–218

    Article  Google Scholar 

  • Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet. Science, 255: 1663–1670

    Article  Google Scholar 

  • Hao M, Wang Q L, Shen Z K, et al. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632: 281–292

    Article  Google Scholar 

  • He S P, Cao W X, Chen Y Y. 2001. The uplift of Qinghai-Xizang (Tibet) Plateau and the vicariance speciation of glyptosternoid fishes (Siluriformes: Sisoridae). Sci China Ser C-Life Sci, 44: 644–651

    Article  Google Scholar 

  • Hetzel R, Dunkl I, Haider V, et al. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39: 983–986

    Article  Google Scholar 

  • Hough B G, Garzione C N, Wang Z, et al. 2014. Timing and spatial patterns of basin segmentation and climate change in Northeastern Tibet. In: Nie J, Horton B K, Hoke G D, eds. Toward and Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Geol Soc Ame Spec Pap. 129–153

    Google Scholar 

  • Huang J Q. 1957. Several types of neotectonism in China. In: Earth Sciences Division, Chineses Academy of Sciences, eds. The Records of the First Symposium on Neotectonic Movements of the Chinese Academy of Sciences (in Chinese). Beijing: Science Press. 8–44

    Google Scholar 

  • Huang W L. 1993. Discussion on gravel transport amount of the Three Gorges (in Chinese). J Hydroelectr Eng, 42: 107–115

    Google Scholar 

  • Hui Z C, Li J J, Xu Q H, et al. 2011. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau. Paleogeogr Paleoclimatol Paleoecol, 308: 373–382

    Article  Google Scholar 

  • Islam M R, Begum S F, Yamaguchi Y, et al. 1999. The Ganges and Brahmaputra rivers in Bangladesh: Basin denudation and sedimentation. Hydro Process, 13: 2907–2923

    Article  Google Scholar 

  • Johnson N M, Stix J, Tauxe L, et al. 1985. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. J Geol, 93: 27–40

    Article  Google Scholar 

  • Kennan L, Lamb S, Hoke L. 1997. High-altitude palaeosurfaces in the Bolivian Andes: Evidence for late Cenozoic surface uplift. Geol Soc London Special Publ, 120: 307–323

    Article  Google Scholar 

  • Le Fort P, Cuney M, Deniel C, et al. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134: 39–57

    Article  Google Scholar 

  • Lease R O. 2014. Cenozoic mountain building on the northeastern Tibetan Plateau. In: Nie J, Horton B K, Hoke G D, eds. Toward and Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Geological Society of America Special Papers. 115–127

    Google Scholar 

  • Li B Y, Pan B T, Gao H S. 2002. A planation surface and ages of volcanic rocks in eastern Hoh Xil, Qinghai-Tibetan Plateau (in Chinese). Quat Sci, 22: 397–405

    Google Scholar 

  • Li J J, Wen S X, Zhang Q S, et al. 1979. A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau (in Chinese). Sci Sin, 22: 1314–1328

    Google Scholar 

  • Li J J. 1991. The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quat Sci Rev, 10: 479–483

    Article  Google Scholar 

  • Li J J. 1993. Uplift of Qinghai-Xizang Plateau and its impacts on environments. In: Bao H S, ed. Geographic Symposium of Professor Ren Meiè’s 80th Birthday (in Chinese). Nanjing: Nanjing University Press. 57–63

    Google Scholar 

  • Li J J. 1995. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou: Lanzhou University Press. 207

    Google Scholar 

  • Li J J, Fang X M, Van Der Voo R, et al. 1997. Late Cenozoic magnetostratigraphy (11–0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geol Mijnbouw, 76: 121–134

    Article  Google Scholar 

  • Li J J, Fang X M. 1999. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 44: 2117–2124

    Article  Google Scholar 

  • Li J J, Fang X M, Pan B T, et al. 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area (in Chinese). Quat Sci, 21: 381–391

    Google Scholar 

  • Li Y, Zhou R J, Densmore A, et al. 2006. Geomorphic evidence for the late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau (in Chinese). Quat Sci, 26: 40–51

    Google Scholar 

  • Li Z J, Yu G H, Rao D Q, et al. 2012. Phylogeography and demographic history of Babinapleuraden (Anura, Ranidae) in southwestern China. PloS One, 7: e34013. doi: 10.1371/journal.pone.0034013

  • Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J Geophys Res, 118: 5722–5732

    Article  Google Scholar 

  • Lin X B, Chen H L, Wyrwoll K H, et al. 2010. Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side. J Asian Earth Sci, 37: 350–360

    Article  Google Scholar 

  • Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20: PA1003

  • Liu J Q, Wang Y J, Wang A L, et al. 2006. Radiation and diversification within the Ligulariai-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 38: 31–49

    Article  Google Scholar 

  • Ma Y Z, Li J J, Fang X M. 1998. Pollen assemblage in 30.6–5.0 Ma redbeds of Linxia region and climate evolution. Chin Sci Bull, 43: 301–304

    Google Scholar 

  • Ma Y Z, Fang X M, Li J J, et al. 2005. The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China. Sci China Ser D-Earth Sci, 48: 676–688

    Article  Google Scholar 

  • Miao Y F, Fang X M, Wu F L, et al. 2013. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Clim Past, 9: 1863–1877

    Article  Google Scholar 

  • Milliman J D, Meade R H. 1983. World-wide delivery of river sediment to the oceans. J Geol. 91: 1–21

    Article  Google Scholar 

  • Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346: 29–34

    Article  Google Scholar 

  • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys, 31: 357–396

    Article  Google Scholar 

  • Mugniera J L, Leturmya P, Masclea G. 1999. The Siwaliks of western Nepal: I. Geometry and kinematics. J Asian Earth Sci, 17: 629–642

    Article  Google Scholar 

  • Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615–621

    Article  Google Scholar 

  • Peng T J, Li J J, Zhao Z J, et al. 2013. Biomarkers Aid Paleoenvironment Studies of Asian Aridification. Eos, Trans AGU, 94: 173–174

    Article  Google Scholar 

  • Raymo M, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    Article  Google Scholar 

  • Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215–224

    Article  Google Scholar 

  • Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677–681

    Article  Google Scholar 

  • Royden L H, Burchfiel B C, van Der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058

    Article  Google Scholar 

  • Shackleton R, Chang C. 1988. Cenozoic uplift and deformation of the Tibetan Plateau: The geomorphological evidence. Philos Trans R Soc A-Math Phys Eng Sci, 327: 365–377

    Article  Google Scholar 

  • Shi Y F. 1998. Evolution of the cryosphere in the Tibetan Plateau, China, and its relationship with the global change in the Mid Quaternary (in Chinese). J Glaciol Geocryol, 20: 197–208

    Google Scholar 

  • Song C H, Gao D L, Fang X M, et al. 2005. Late Cenozoic high-resolution magnetostratigraphy in the Kunlun Pass Basin and its implications for the uplift of the northern Tibetan Plateau. Chin Sci Bull, 50: 1912–1922

    Article  Google Scholar 

  • Song Y G, Fang X M, Li J J, et al. 2000. Age of red clay at Chaona section near eastern Liupan Mountain and its tectonic significance (in Chinese). Quat Sci, 20: 457–463

    Google Scholar 

  • Spicer R A, Harris N B, Widdowson M, et al. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622–624

    Article  Google Scholar 

  • Strobl M, Hetzel R, Ding L, et al. 2010. Preservation of a large-scale bedrock peneplain suggests long-term landscape stability in southern Tibet. Zeitschrift Fur Geomorphologie, 54: 453–466

    Article  Google Scholar 

  • Summerfield M A, Hulton N J. 1994. Natural control of fluvial denudation rate in major world drainage basins. J Geophys Res, 99: 13871–13883

    Article  Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • The Ministry of Water Resources of the People’s Republic of China (WMR). 2011. China River Sediment Bulletin (in Chinese). Beijing: China Water & Power Press. 64

    Google Scholar 

  • Tian Y T, Kohn B P, Gleadow A J W, et al. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. J Geophys Res, 119: 676–689

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Liu J Q, et al. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50–54

    Article  Google Scholar 

  • van der Beek P, Van Melle J, Guillot S, et al. 2009. Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geosci, 2: 364–368

    Article  Google Scholar 

  • Wagner T, Fritz H, Stüwe K, et al. 2011. Correlations of cave levels, stream terraces and planation surfaces along the River Mur-Timing of landscape evolution along the eastern margin of the Alps. Geomorphology, 134: 62–78

    Article  Google Scholar 

  • Wang C S, Li X H, Hu X M, et al. 2002. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114–120

    Article  Google Scholar 

  • Wang C S, Zhao X X, Liu Z F, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992

    Article  Google Scholar 

  • Wang C S, Dai J G, Zhao X X, et al. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43

    Article  Google Scholar 

  • Wang F B, Li S F, Shen X H. 1998. Geological record from outcrops in northern slope of the middle section of the Himalaya (mainly the Gyirong Basin). In: Shi Y F, Li J J, Li B Y, eds. Late Cenozoic Uplift of Tibet and Environment Changes (in Chinese). Guangzhou: Guangdong Science & Technology Press. 117–139

    Google Scholar 

  • Wang X M, Qiu Z D, Li Q, et al. 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Paleogeogr Paleoclimatol Paleoecol, 254: 363–385

    Article  Google Scholar 

  • Wang X M, Xie G P, Li Q, et al. 2011. Early explorations of Qaidam Basin (Tibetan Plateau) by Birger Bohlin: Reconciling classic vertebrate fossil localities with modern biostratigraphy. Vertebrata PalAsiatica, 49: 285–310

    Google Scholar 

  • Wang Y, Deng T, Flynn L, et al. 2012. Late Neogene environmental changes in the central Himalaya related to tectonic uplift and orbital forcing. J Asian Earth Sci, 44: 62–76

    Article  Google Scholar 

  • Wang Y, Xu Y F, Khawaja S, et al. 2013. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett, 376: 43–53

    Article  Google Scholar 

  • Wasson R. 2003. A sediment budget for the Ganga-Brahmaputra catchment. Current Sci, 84: 1041–1047

    Google Scholar 

  • Wilson A W. 1903. The Laurentian Peneplain. J Geol, 11: 615–667

    Article  Google Scholar 

  • Xu R, Tao J R, Sun X J. 1973. On the discovery of a Quercus Semicarpifolia bed in mount Shisha Pangma and its significance in botany and geology (in Chinese). Acta Bot Sin, 15: 103–119

    Google Scholar 

  • Yan F, Zhou W W, Zhao H T, et al. 2013. Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaaboulengeri (Anura: Dicroglossidae). Mol Ecol, 22: 1120–1133

    Article  Google Scholar 

  • Yan M D. 2003. Cenozoic high resolution magnetostratigraphy of the NE Tibetan Plateau and its geological implicaitons. PhD Dissertation. Lanzhou: Lanzhou University. 1–142

    Google Scholar 

  • Yan M D, Fang X M, Van Der Voo R, et al. 2012. Neogene rotations in the Jiuquan Basin, Hexi Corridor, China. Geol Soc London Spec Publ, 373, doi: 10.1144/SP373.12

    Google Scholar 

  • Yuan Q J, Zhang Z Y, Peng H, et al. 2008. Chloroplast phylogeography of Dipentodon (Dipentodontaceae) in southwest China and northern Vietnam. Mol Ecol, 17: 1054–1065

    Article  Google Scholar 

  • Yue L P, Heller F, Qiu Z X, et al. 2001. Magnetostratigraphy and pavleo-environmental record of Tertiary deposits of Lanzhou Basin. Chin Sci Bull, 46: 770–773

    Article  Google Scholar 

  • Yue L P, Qiu Z X, Xie G P, et al. 2003. Sedimentary environment of Tertiary recorded in the Yongdeng section of Lanzhou Basin (in Chinese). Acta Sedimentol Sin, 21: 683–687

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

  • Zhang C F, Wang Y, Li Q, et al. 2012. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes. Earth Planet Sci Lett, 333: 70–82

    Article  Google Scholar 

  • Zhang D R, Chen M Y, Murphy R W, et al. 2010a. Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, Nanoranayunnanensis (Dicroglossidae). Mol Ecol, 19: 3406–3420

    Article  Google Scholar 

  • Zhang K X, Wang G C, Ji J L, et al. 2010b. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci China Earth Sci, 53: 1271–1294

    Article  Google Scholar 

  • Zhang P Z, Molnar P, Downs W R. 2001. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410: 891–897

    Article  Google Scholar 

  • Zhang P Z, Zheng D W, Yi G M, et al. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau (in Chinese). Quat Sci, 26: 5–13

    Google Scholar 

  • Zhao Z J, Fang X M, Li J J, et al. 2001. Paleomagnetic dating of the Jiuquan Gravel in the Hexi Corridor: Implication on mid-Pleistocene uplift of the Qinghai-Tibetan Plateau. Chin Sci Bull, 46: 2001–2005

    Article  Google Scholar 

  • Zhao Z J, Liu Y, Chen Y, et al. 2013. Quaternary fluvial incision rates of the Western Sichuan Plateau inferred from ESR chronology (in Chinese). J Lanzhou Univ, 49: 160–165

    Google Scholar 

  • Zheng D W, Zhang P Z, Wan J L, et al. 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite flssion-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 248: 198–208

    Article  Google Scholar 

  • Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28: 715–718

    Article  Google Scholar 

  • Zhou A H. 2012. Characteristics of sand discharge of the Mekong River during the last 20 years (in Chinese). Yangtze River, 43(Supplement): 114–115

    Google Scholar 

  • Zhou S Z, Li J J, Zhao J D, et al. 2011. Chapter 70—Quaternary Glaciations: Extent and chronology in China. In: Ehlers J, Gibbard P L, Hughes P D, eds. Developments in Quaternary Sciences, vol. 15. Amsterdam: Elsevier. 981–1002

    Article  Google Scholar 

  • Zhou S Z, Wang X L, Wang J, et al. 2006. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat Int, 154-155: 44–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShangZhe Zhou or ZhiJun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhou, S., Zhao, Z. et al. The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau. Sci. China Earth Sci. 58, 2113–2122 (2015). https://doi.org/10.1007/s11430-015-5124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5124-4

Keywords

Navigation