Skip to main content
Log in

Research progress on discretization of fractional Fourier transform

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Process, 1994, 42: 3084–3091

    Article  Google Scholar 

  2. Ozaktas H M, Zalevsky Z, Kutay M A. The Fractional Fourier Transform with Applications in Optics and Signal Processing. New York: Wiley, 2000. 1–513

    Google Scholar 

  3. Namias V. The fractional order Fourier transform and its application to quantum mechanics. J Inst Math Appl, 1980, 25: 241–265

    Article  MATH  MathSciNet  Google Scholar 

  4. Tao R, Deng B, Wang Y. Research progress of the fractional Fourier in signal processing. Sci China Ser F-Inf Sci, 2006, 49(1): 1–25

    Article  MATH  MathSciNet  Google Scholar 

  5. Tao R, Qi L, Wang Y. Theory and Application of the Fractional Fourier Transform (in Chinese). Beijing: Tsinghua University Press, 2004. 23–49

    Google Scholar 

  6. Zayed A I. On the relationship between the Fourier transform and fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 310–311

    Article  Google Scholar 

  7. Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Amer A, 1993, 10: 2181–2186

    Google Scholar 

  8. Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transform. J Opt Soc Amer A, 1994, 11: 547–559

    MathSciNet  Google Scholar 

  9. Lohmann A W, Soffer B H. Relationship between the Radon-Wigner and the fractional Fourier transform. J Opt Soc Amer A, 1994, 11:1798–1801

    MathSciNet  Google Scholar 

  10. Mustard D A. The fractional Fourier transform and the Wigner distribution. J Aust Math Soc B, 1996, 38: 209–219

    MATH  MathSciNet  Google Scholar 

  11. Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans Signal Process, 2001, 49: 1638–1655

    Article  MathSciNet  Google Scholar 

  12. Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform. IEEE Trans Signal Process, 2000, 48: 1329–1337

    Article  MATH  MathSciNet  Google Scholar 

  13. Ozaktas H M, Aytur O. Fractional Fourier domains. Signal Process, 1995, 46: 119–124

    Article  MATH  Google Scholar 

  14. Kraniauskas P, Cariolaro G, Erseghe T. Method for defining a class of fractional operations. IEEE Trans Signal Process, 1998, 46: 2804–2807

    Article  MATH  MathSciNet  Google Scholar 

  15. Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform. IEEE Trans Signal Process, 1998, 46: 3206–3219

    Article  MATH  MathSciNet  Google Scholar 

  16. Almeida L B. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process Lett, 1997, 4: 15–17

    Google Scholar 

  17. Zayed A I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process Lett, 1998, 5: 101–103

    Article  Google Scholar 

  18. Xia X. On bandlimited signals with fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 72–74

    Article  Google Scholar 

  19. Erseghe T, Kraniauskas P, Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans Signal Process, 1999, 47: 3419–3423

    Article  MATH  Google Scholar 

  20. Pei S C, Ding J J. Simplified fractional Fourier transforms. J Opt Soc Amer A, 2000, 17: 2355–2367

    Article  MathSciNet  Google Scholar 

  21. Erden M F, Kutay M A, Ozaktas H M. Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. IEEE Trans Signal Process, 1999, 47: 1458–1462

    Article  Google Scholar 

  22. Zalevsky Z, Mendlovic K. Fractional Wiener filter. Appl Opt, 1996, 35: 3930–3936

    Article  Google Scholar 

  23. Kutay M A, Ozaktas H M, Arikan O, et al. Optimal image restoration with the fractional Fourier transform. J Opt Soc Amer A, 1998, 15: 825–833

    Article  Google Scholar 

  24. Erden M F, Ozaktas H M. Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains. J Opt Soc Amer A, 1998, 15: 1647–1657

    Article  Google Scholar 

  25. Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Trans Signal Process, 1996, 44: 2141–2150

    Article  Google Scholar 

  26. Ozaktas H M, Mendlovic D. Fractional Fourier optics. J Opt Soc Amer A, 1995, 12: 743–751

    MathSciNet  Google Scholar 

  27. McBride A C, Kerr F H. On Namias’ fractional Fourier transforms. IMA J Appl Math, 1987, 39: 159–175

    Article  MATH  MathSciNet  Google Scholar 

  28. Mendlovic D, Ozaktas H M, Lohmann A W. Fractional correlation. Appl Opt, 1995, 34: 303–309

    Google Scholar 

  29. Candan C, Ozaktas H M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process, 2003, 83: 2455–2457

    Article  MATH  Google Scholar 

  30. Zayed A I, Garcia A G. New Sampling formulae for the fractional Fourier transform. Signal Process, 1999, 77: 111–114

    Article  MATH  Google Scholar 

  31. Sharma K K, Joshi S D. Fractional Fourier transform of bandlimited periodic signals and its sampling theorem. Opt Commun, 2005, 256: 272–278

    Article  Google Scholar 

  32. Sharma K K, Joshi S D. On scaling properties of fractional Fourier transform and its relation with other transforms. Optics Commun, 2006, 257: 27–38

    Article  Google Scholar 

  33. Torres R, Pellat-Finet P, Torres Y. Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography. IEEE Signal Process Lett, 2006, 13: 676–679

    Article  Google Scholar 

  34. Zhang W Q, Tao R. Sampling theorems for bandpass signals with fractional Fourier transform(in Chinese). Acta Electron Sin, 2005, 33(7): 1196–1199

    Google Scholar 

  35. Pei S C, Yeh M H, Luo T L. Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform. IEEE Trans Signal Process, 1999, 47: 2883–2888

    Article  MATH  MathSciNet  Google Scholar 

  36. Barkat B, Yinguo J. A modified fractional Fourier series for the analysis of finite chirp signals & its application. In: IEEE the 7th International Symposium on Signal Processing and Its Application. New York: IEEE Press, 2003, 1: 285–288

    Chapter  Google Scholar 

  37. Alieva T, Barbe A. Fractional Fourier and Radon-Wigner transforms of periodic signals. Signal Process, 1998, 69: 183–189

    Article  MATH  Google Scholar 

  38. Dickinson B W, Steiglitz K. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans Acoust Speech Signal Process, 1982, ASSP-30: 25–31

    Article  MathSciNet  Google Scholar 

  39. Santhanam B, McClellan J H. The DRFT—a rotation in time-frequency space. In: Proc IEEE Int Conf Acoustics Speech Signal Process. New York: IEEE Press, 1995. 921–924

    Google Scholar 

  40. Santhanam B, McClellan J H. The discrete rotational Fourier transform. IEEE Trans Signal Process, 1996, 42: 994–998

    Article  Google Scholar 

  41. Cariolaro G, Erseghe T, Kraniauskas P, et al. Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans Signal Process, 2000, 48: 227–241

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhao X H, Tao R, Deng B. Practical normalization methods in the digital computation of the fractional Fourier transform. In: Proc IEEE Int Conf Signal Process. New York: IEEE Press, 2004, 1: 105–108

    Chapter  Google Scholar 

  43. Bultheel A, Sulbaran H M. Computation of the fractional Fourier transform. Appl Comput Harmon Anal, 2004, 16: 182–202

    Article  MATH  MathSciNet  Google Scholar 

  44. Deng X G, Li Y P, Fan D Y, et al. A fast algorithm for fractional Fourier transform. Opt Commun, 1997, 138: 270–274

    Article  Google Scholar 

  45. Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans Signal Process, 2000, 48: 1338–1353

    Article  MATH  MathSciNet  Google Scholar 

  46. McClellan J H, Parks T W. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans Audio Eletroacoustics, 1972, AU-20: 66–74

    Article  MathSciNet  Google Scholar 

  47. Pei S C, Yeh M H. Discrete fractional Fourier transform. Proc IEEE Int Symp Circ Syst, 1996. 536–539

  48. Pei S C, Yeh M H. Improved discrete fractional Fourier transform. Opt Lett, 1997, 22: 1047–1049

    Article  Google Scholar 

  49. Pei S C, Tseng C C, Yeh M H, et al. Discrete fractional Hartley and Fourier transform. IEEE Trans Circ Syst II, 1998, 45: 665–675

    Article  MATH  Google Scholar 

  50. Pei S C, Tseng C C. A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Largrange multiplier method. In: Proc IEEE Int Conf Acoustics Speech Signal Process. New York: IEEE Press, 1997. 3965–3968

    Google Scholar 

  51. Pei S C, Tseng C C, Yeh M H. A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Largrange multiplier method. IEEE Trans Circuits Syst II, 1999, 46: 1240–1245

    Google Scholar 

  52. Pei S C, Yeh M H, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans Signal Process, 1999, 47: 1335–1348

    Article  MATH  MathSciNet  Google Scholar 

  53. Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform. In: Proc IEEE Int Conf Acoustics Speech Signal Process. New York: IEEE Press, 1999. 1713–1716

    Google Scholar 

  54. Hanna M T, Seif N P A, Ahmed W A E M. Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the singular value decomposition of its orthogonal projection matrices. IEEE Trans Circ Syst I, 2004, 51: 2245–2254

    Article  MathSciNet  Google Scholar 

  55. Hanna M T, Seif N P A, Ahmed W A E M. Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the direct utilization of the orthogonal projection matrices on its eigenspaces. IEEE Trans Signal Process, 2006, 54: 2815–2819

    Article  Google Scholar 

  56. Pei S C, Hsue W L, Ding J J. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. Proc IEEE Int Conf Acoustics Speech and Signal Process, 2005. 385–388

  57. Pei S C, Hsue W L, Ding J J. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. IEEE Trans Signal Process, 2006, 54: 3815–3828

    Article  Google Scholar 

  58. Candan C. On higher order approximations for Hermite-Gaussian functions and discrete fractional Fourier transforms. IEEE Signal Process Lett, 2007, 14: 699–702

    Article  Google Scholar 

  59. Arikan O, Kutay M A, Ozaktas H M, et al. The discrete fractional Fourier transformation. In: Proc IEEE Int Symp Time-Frequency Time-Scale Anal. New York: IEEE Press, 1996. 205–207

    Chapter  Google Scholar 

  60. Richman M S, Parks T W. Understanding discrete rotations. In: Proc IEEE Int Conf Acoust Speech Signal Process. New York: IEEE Press, 1997, 3: 2057–2060

    Google Scholar 

  61. Zhu B H, Liu S T, Ran Q W. Optical image encryption based on multifractional Fourier transforms. Opt Lett, 2000, 25(16): 1159–1161

    Article  Google Scholar 

  62. Ran Q W, Yeung D S, E. Tsang C C, et al. General multifractional Fourier transform method based on the generalized permutation matrix group. IEEE Trans Signal Process, 2005, 53(1): 83–98

    Article  MathSciNet  Google Scholar 

  63. Qi L, Tao R, Zhou S Y, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci China Ser F-Inf Sci, 2004, 47(2): 184–198

    Article  MATH  MathSciNet  Google Scholar 

  64. Tao R, Li B Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Process, 2007, 55(7): 3541–3547

    Article  MathSciNet  Google Scholar 

  65. Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans Signal Process, 2008, 56(1): 158–171

    Article  MathSciNet  Google Scholar 

  66. Zhang F, Tao R. Multirate signal processing based on discrete time fractional Fourier transform(in Chinese). Prog Natl Sci, 2008, 18(1): 93–101

    Google Scholar 

  67. Pei S C, Hsue W L. The multiple-parameter discrete fractional Fourier transform. IEEE Signal Process Lett, 2006, 13: 329–332

    Article  Google Scholar 

  68. Pei S C, Yeh M H. A novel method for discrete fractional Fourier transform computation. In: Proc IEEE Int Symp Circ Syst. New York: IEEE Press, 2001. 585–588

    Google Scholar 

  69. Yeh M H, Pei S C. A method for the discrete fractional Fourier transfor computation. IEEE Trans Signal Process, 2003, 51: 889–891

    Article  MathSciNet  Google Scholar 

  70. Hanna M T. On the angular decomposition technique computing the discrete fractional Fourier transform. In: Proc IEEE Int Conf Acoust Speech Signal Process. New York: IEEE Press, 2007. 3988–3991

    Google Scholar 

  71. Huang D F, Chen B S. A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform. Signal Process, 2000, 80: 1501–1513

    Article  Google Scholar 

  72. Zhu Y Q, Qi L, Yang S Y, et al. Calculation of discrete fractional Fourier transform based on adaptive LMS algorithm. Proc IEEE Int Conf Signal Process, 2006, 1: 16–20

    Google Scholar 

  73. Hanna M T. A discrete fractional Fourier transform based on orthonormalized McClellan-Parks eigevectors. In: Proc IEEE Int Conf Circ Syst. New York: IEEE Press, 2003. 81–84

    Google Scholar 

  74. Pei S C, Yeh M H. Two dimensional discrete fractional Fourier transform. Signal Process, 1998, 67: 99–108

    Article  MATH  Google Scholar 

  75. Narayanan V A, Prabhu K M M. The fractional Fourier transform: theory, implementation and error analysis. Microprocess Microsy, 2003, 27: 511–521

    Article  Google Scholar 

  76. Pei S C, Yeh M H. Discrete fractional Hadamard transform. In: Pro IEEE Int Symp Circ Syst. New York: IEEE Press, 1999. 179–182

    Google Scholar 

  77. Pei S C, Yeh M H. The discrete fractional cosine and sine transforms. IEEE Trans Signal Processing, 2001, 49: 1198–1207

    Article  MathSciNet  Google Scholar 

  78. Cariolaro G, Erseghe T, Kraniauskas P. The fractional discrete cosine transform. IEEE Trans Signal Process, 2002, 50: 902–911

    Article  MathSciNet  Google Scholar 

  79. Tseng C C. Eigenvalues and eigenvectors of generalized DFT, generalized DHT, DCT-IV and DST-IV matrices. IEEE Trans Signal Process, 2002, 50: 866–877

    Article  MathSciNet  Google Scholar 

  80. Pei S C, Ding J J. Generalized eigenvectors and fractionalization of offset DFTs and DCTs. IEEE Trans Signal Process, 2004, 52: 2032–2046

    Article  MathSciNet  Google Scholar 

  81. Vargas-Rubio J G, Santhanam B. On the multiangle centered discrete fractional Fourier transform. IEEE Signal Process Lett, 2005, 12: 273–276

    Article  Google Scholar 

  82. Pei S C, Yeh M H. Discrete fractional Hilbert transform. Proc IEEE Int Symp Signal Process, 1998. 506–509

  83. Liu Z J, Zhao H F, Liu S T. A discrete fractional random transform. Opt Commu, 2005, 255: 357–365

    Article  Google Scholar 

  84. Yeh M H. Angular decompositions for the discrete fractional signal transforms. In: Proc IEEE Int Symp Circ Syst. New York: IEEE Press, 2003. 93–96

    Google Scholar 

  85. Yeh M H. Angular decompositions for the discrete fractional signal transforms. Signal Process, 2005, 85: 537–547

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60232010 and 60572094) and the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, R., Zhang, F. & Wang, Y. Research progress on discretization of fractional Fourier transform. Sci. China Ser. F-Inf. Sci. 51, 859–880 (2008). https://doi.org/10.1007/s11432-008-0069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-008-0069-2

Keywords

Navigation