Skip to main content
Log in

Recent advances on virtual human synthesis

  • Special Focus
  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Virtual human is a digital representation of the geometric and behavioral property of human beings in the virtual environment generated by computer. The research goal of virtual human synthesis is to generate realistic human bodymodels and natural human motion behavior. This paper introduces the development of the related researches on these two topics, and some progresses on example based human modeling and motion synthesis, and their applications in Chinese sign language teaching, computeraided sports training and public safety problem studying. Finally, some hot research topics in virtual human synthesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z. Study on synthesis of virtual human (in Chinese). J Graduate School of the Chinese Academy of Sciences, 2000, 17(2): 89–98

    Google Scholar 

  2. Zhao Q P. A survey on virtual reality. Sci China Ser F-Inf Sci, 2009, 52(3): 348–400

    Article  Google Scholar 

  3. Fetter W A. A progression of human figures simulated by computer graphics. IEEE Comput Graph Appl, 1982, 2(9): 9–13

    Article  Google Scholar 

  4. Badler N I, Phillips C B, Webber B L. Simulating Humans: Computer Graphics, Animation, and Control. London: Oxford University Press, 1999

    Google Scholar 

  5. Koechling J, Crane A, Raibert M. People are not tanks: live reckoning for simulated dismounted infantry using di-guy. In: Proceedings of Fall Simulation Interoperability Workshop, Orlando FL, Sep. 8, 1997

  6. Magnenat-Thalmann N, Thalmann D. An overview of virtual humans. Handbook of Virtual Humans. New York: John Wiley, 2004. 1–25

    Chapter  Google Scholar 

  7. Badler N I, O’Rourke J, Toltzis H. A spherical representation of a human body for visualizing movement. Proc IEEE, 1979, 67(10): 1397–1403

    Article  Google Scholar 

  8. Scheepers F, Parent R E, Carlson W E, et al. Anatomy-based modeling of the human musculature. In: Computer Graphics (SIGGRAPH97 Proceedings), August 1997. 163–172

  9. Wilhelms J, Gelder A V. Anatomically based modeling. In: Computer Graphics (SIGGRAPH97 Proceedings), August 1997. 173–180

  10. Aubel A, Thalmann D. MuscleBuilder: a modeling tool for human anatomy. J Comp Sci Tech, 2004, 19(5): 585–595

    Article  Google Scholar 

  11. Hilton D, Beresford T, Gentils R S, et al. Virtual people: capturing human models to populate virtual worlds. In: Werner B, ed. Computer Animation. Piscataway, NJ: IEEE Computer Society Press, 1999. 174–185

    Google Scholar 

  12. Lee W, Gu J, Magnenat-Thalmann N. Generating animatable 3D virtual humans from photographs. Comput Graph Forum, Proceedings of Eurographics’2000 Interlaken, Switzerland, August, 2000, 19(3): 1–10

    Google Scholar 

  13. Mao T, Wang Z. A method for virtual body cloning from photographs (in Chinese). J Comput Res Devel, 2002, 39(suppl): 39–44

    Google Scholar 

  14. Dekker L, Douros I, Buxton B F, et al. Building symbolic information for 3D human body modeling from range data. In: Proceedings of the Second International Conference on 3D Digital Imaging and Modeling, IEEE Computer Society, 1999. 388–397

  15. Wade L, Parent R E. Automated generation of control skeletons for use in animation. Visual Comput, 2002, 18(2): 97–110

    Article  MATH  Google Scholar 

  16. Ma Y, Zhang H, Jiang S. Realistic modeling and animation of human body based on scanned data. J Comput Sci Tech, 2004, 19(4): 529–537

    Article  Google Scholar 

  17. Gutiérrez M, García-Rojas A, Thalmann D, et al. An ontology of virtual humans: incorporating semantics into human shapes. Visual Comput, 2007, 23(3): 207–218

    Article  Google Scholar 

  18. Baran I, Popovic J. Automatic rigging and animation of 3D characters. ACM Trans Graph, 2007, 26(3): 72

    Article  Google Scholar 

  19. Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: Computer Graphics Proceedings of SIGGRAPH99, 1999. 187–194

  20. Sloan P J, Rose C F, Cohen M F. Shape by example. In: Proceedings of the 2001 Symposium on interactive 3D Graphics I3D’ 01. New York: ACM, 2001. 135–143

    Chapter  Google Scholar 

  21. Allen B C, Popovic Z. Articulated body deformation from range scan data. In: Proceedings SIGGRAPH 2002, Addison-Wesley, 2002. 612–619

  22. Seo H, Cordier F, Magnenat-Thalmann N. Synthesizing animatable body models with parameterized shape modifications. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003. 120–125

  23. Li Y, Wang Z, Mao T. A survey of virtual human skin deformation (in Chinese). J Comput Res Devel, 2005, 42(5): 888–896

    Article  Google Scholar 

  24. Anguelov D, Srinivasan P, Koller D, et al. SCAPE: Shape completion and animation of people. ACM Trans Graph, 2005, 24(3): 408–416

    Article  Google Scholar 

  25. Park S II, Hodgins J K. Capturing and animating skin deformation in human motion. ACM Trans Graph, 2006, 25(3): 881–889

    Article  Google Scholar 

  26. Balan A O, Sigal L, Black M J, et al. Detailed human shape and pose from images. In: Computer Vision and Pattern Recognition. NJ USA: IEEE Press, 2007. 1–8

    Chapter  Google Scholar 

  27. Yu Y, Mao T, Xia S, et al. A Pose-Independent method of animating scanned human bodies. In: Computer Graphics International Conference, 2008. 232–239

  28. McCann J, Pollard N S, Srinivasa S. Physics-based motion retiming. In: Proceedings of the 2006 ACM Siggraph/Eurographics Symposium on Computer Animation, 2006. 205–214

  29. Hsu E, Silva M D, Popovic J. Guided time warping for motion editing. In: Proceedings of the 2007 ACM Siggraph/Eurographics Symposium on Computer Animation, August 02–04, 2007. 45–52

  30. Johnson M P. Exploiting quaternions to support expressive interactive character motion. Ph.D. dissertation, USA: Massachusetts Institute of Technology, 2003

    Google Scholar 

  31. Li C, Wang Z, Xia S, et al. Inverse kinematics using local support poses (in Chinese). Chinese J Comput, 2007, 30(11): 1982–1988

    Google Scholar 

  32. Whitney D E. Resolved motion rate control of manipulators and human prostheses. IEEE Trans Man-Mach Syst, 1969, MMS-10(2): 47–53

    Article  MathSciNet  Google Scholar 

  33. Wampler C W. Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods. IEEE Trans Sys Man Cybernet, 1986, SMC(16): 93–101

    Article  Google Scholar 

  34. Komura T, Kuroda A, Kudoh S, et al. An inverse kinematics method for 3D figures with motion data. In: Proceedings of Computer Graphics International, July, 2003. 266–271

  35. Li C, Xia S, Wang Z. Pose synthesis using the inverse jacobian matrices learned from examples. In: IEEE VR, 2007. 99–106

  36. Zhao J, Badler N I. Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Trans Graph, 1994, 13(4): 313–336

    Article  Google Scholar 

  37. Tak S, Ko H. Example guided inverse kinematics. In: Proceedings of International Conference on Computer Graphics and Imaging, 2000. 19–23

  38. Featherstone R, Orin D. Robot dynamics: equations and algorithms. In: Proceedings of IEEE ICRA 2000, 2000. 826–834

  39. Featherstone R. Robot Dynamics Algorithms. Norwell, MA: Kluwer Academic Publishers, 1987. 1–211

    Google Scholar 

  40. Oshita M, Makinouchi A. A dynamic motion control technique for human-like articulated figures. Comput Graph Forum, 2001, 20(3): 192–202

    Article  Google Scholar 

  41. Safonova A, Hodgins J K, Pollard N S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In: Proceedings of SIGGRAPH 2004, 2004. 514–521

  42. Nikravesh P. Computer-aided Analysis of Mechanical Systems. EngleWood Cliffs, New Jersey: Perntice Hall, 1988. 1–370

    Google Scholar 

  43. Liu Z C. Efficient animation techniques balancing both user control and physical realism. Ph. D. dissertation, USA: Princeton University, 1996

    Google Scholar 

  44. Guenter B. Efficient symbolic differentiation for graphics applications. ACM Trans Graph, 2007, 26(3): 1–12

    Article  Google Scholar 

  45. Hollerbach J. A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybernet, 1980, SMC-10(11): 730–736

    MathSciNet  Google Scholar 

  46. Popovic Z. Motion transformation by physically based spacetime optimization. Ph. D. dissertation, USA: Carnegie Mellon University, 1999

    Google Scholar 

  47. Armstrong W W, Green M. The dynamics of articulated rigid bodies for the purposes of animation. Visual Comput, 1985, 1(4): 231–240

    Article  Google Scholar 

  48. Wilhelms J. Using dynamic analysis for realistic animation of articulated bodies. IEEE Compu Graph Appl, 1987, 7(6): 12–27

    Article  Google Scholar 

  49. Isaacs P M, Cohen M F. Controlling dynamic simulation with kinematic constraints, behavior functions and inverse dynamics. Comput Graph, 1987, 21(4): 215–224

    Article  Google Scholar 

  50. Armstrong W W, Green M, Lake R. Near-real-time control of human figure models. IEEE Comput Graph Appl, 1987, 7(6): 52–61

    Article  Google Scholar 

  51. McKenna M, Zeltzer D. Dynamic simulation of autonomous legged locomotion. Comput Graph, 1990, 24(4): 29–38

    Article  Google Scholar 

  52. Witkin A, Kass M. Spacetime constraints. In: Proceedings of SIGGRAPH 1988, 1988. 159–168

  53. Liu Z C, Gortler S J, Cohen M F. Hierarchical spacetime control. In: Proceedings of SIGGRAPH 1994, 1994. 35–42

  54. Yang F, Yuan X. Computational simulation of human motion based on comfort level maximization (in Chinese). J Computaided Des Comput Graph, 2005, 17(2): 267–272

    Google Scholar 

  55. Gleicher M. Motion editing with spacetime constraints. In: Proceedings of Symposium on Interactive 3D Graphics, 1997. 139–148

  56. Sulejmanpasic A, Popovic J. Adaptation of performed ballistic motion. ACM Trans Graph, 2005, 24(1): 165–179

    Article  Google Scholar 

  57. Fang A C, Pollard N S. Efficient synthesis of physically valid human motion. ACM Trans Graph, 2003, 22(3): 417–426

    Article  Google Scholar 

  58. Cohen M F. Interactive spacetime control for animation. Compu Graph, 1992, 26(2): 293–302

    Article  Google Scholar 

  59. Popovic Z, Witkin A. Physically based motion transformation. In: Proceedings of SIGGRAPH 1999, 1999. 11–20

  60. Liu C K, Hertzmann A, Popovic Z. Composition of complex optimal multi-character motions. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on Computer animation, 2006. 215–222

  61. Smith J. Three applications of optimization in computer graphics. Ph. D. Dissertation, USA: Carnegie Mellon University, 2003

    Google Scholar 

  62. Raibert M H, Hodgins J K. Animation of dynamic legged locomotion. Comput Graph, 1991, 25(4): 349–358

    Article  Google Scholar 

  63. Hodgins J K, Sweeney P K, Lawrence D G. Generating natural looking motion for computer animation. In: Proceedings of Graphics Interface 1992, 1992. 265–272

  64. Hodgins J K. Simulation of human running. In: Proceedings of IEEE International Conference on Robotics and Automation 1994, 1994. 1320–1325

  65. Hodgins J K, Wooten W, Brogan D C, et al. Animating human athletics. In: Proceedings of SIGGRAPH 1995, 1995. 71–78

  66. Hodgins J K, Pollard N S. Adapting simulated behaviours for new characters. In: Proceedings of SIGGRAPH 1997, 1997. 153–162

  67. Liu C K, Hertzmann A, Popovic Z. Learning physics-based motion style with nonlinear inverse optimization. In: Proceedings of SIGGRAPH 2005, 2005. 1071–1081

  68. Laszlo J, Van De Panne M, Fiume E. Limit cycle control and its application to the animation of balancing and walking. In: Proceedings of SIGGRAPH 1996, 1996. 155–162

  69. Sok K W, Kim M, Lee J. Simulating biped behaviors from human motion data. ACM Trans Graph, 2007, 26(3): 1–9

    Article  Google Scholar 

  70. Faloutsos P, Van De Panne M, Terzopoulos D. Composable controllers for physics-based character animation. In: Proceedings of SIGGRAPH 2001, 2001. 251–260

  71. Singla P, Mortari D, Junkins J. How to avoid singularity for Euler angle set? In: AAS/AIAA Space Flight Mechanics Meeting Conference, 2004

  72. Wei Y, Xia S, Zhu D, et al. A robust method for analyzing the physical correctness of motion capture data. In: Proceedings of the 2006 ACM Virtual Reality Software and Technology. New York: ACM Press, 2006. 338–341

  73. Wei Y, Xia S, Wang Z. Physics-based simulation of human motion in flight (in Chinese). J Software, 2008, 19(12): 1–8

    Google Scholar 

  74. Wei Y. Reasearch on dynamics-based simulation of human motion in flight (in Chinese). Ph.D. dissertation. Beijing: Institute of Computing Technology, Chinese Academy of Science, 2008

    Google Scholar 

  75. Wang Z, Gao W. A method to synthesize chinese sign language based on virtual human technologies (in Chinese). J Software, 2002, 13(10): 2051–2056

    MathSciNet  Google Scholar 

  76. Xia S, Qiu X, Wang Z. A novel framework for athlete training based on interactive motion editing and silhouette analysis. In: Proceedings of ACM Virtual Reality Software and Technology (VRST), 2005. 56–58

  77. Wang Z, Zhang Y, Xia S. 3D human motion simulation and a video analysis system for sports training (in Chinese). J Comput Res Devel, 2005, 42(2): 344–352

    Article  Google Scholar 

  78. Wang Z, Xia S, Qiu X, et al. Digital 3D trampoline simulation system-VHTrampoline (in Chinese). Chinese J Comput, 2007, 30(3): 498–505

    Google Scholar 

  79. Wen G, Wang Z, Xia S, et al. Least-squares fitting of multiple M-dimensional point sets. Visual Comput, 2006, 22(6): 387–398

    Article  Google Scholar 

  80. Wen G, Wang Z, Xia S, et al. From motion capture data to character animation. In: Proceedings of ACM Virtual Reality Software and Technology (VRST), 2006. 165–168

  81. Qiu X, Wang Z, Xia S, et al. A virtual-real comparision method used for sport simulation and analysis (in Chinese). J Comput Res Devel, 2005, 42(8): 1324–1330

    Article  Google Scholar 

  82. Wang J, Wang Z, Li C, et al. Hierarchical obstacle avoidance for crowd simulation (in Chinese). J Comput Res Devel, 2007, 44(12): 2058–2065

    Article  Google Scholar 

  83. Xu W, Mao T, Shu B, et al. Point-based rendering of largescale 3d models (in Chinese). Comput Simul, 2007, 24(5): 193–197

    Google Scholar 

  84. Mao T, Shu B, Xu W, et al. CrowdViewer: from simple script to large-scale virtual crowds. In: Proceedings of ACM Virtual Reality Software and Technology (VRST), 2007. 113–116 XIA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiHong Xia.

Additional information

Supported partially by the National High-Tech Research & Development Program of China (Grant Nos. 2006AA01Z336, 2007AA01Z320), and the National Natural Science Foundation of China (Grant No. 60533070)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, S., Wang, Z. Recent advances on virtual human synthesis. Sci. China Ser. F-Inf. Sci. 52, 741–757 (2009). https://doi.org/10.1007/s11432-009-0088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0088-7

Keywords

Navigation