Skip to main content
Log in

Asymmetric encryption and signature method with DNA technology

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes DNA-PKC, an asymmetric encryption and signature cryptosystem by combining the technologies of genetic engineering and cryptology. It is an exploratory research of biological cryptology. Similar to conventional public-key cryptology, DNA-PKC uses two pairs of keys for encryption and signature, respectively. Using the public encryption key, everyone can send encrypted message to a specified user, only the owner of the private decryption key can decrypt the ciphertext and recover the message; in the signature scheme, the owner of the private signing key can generate a signature that can be verified by other users with the public verification key, but no else can forge the signature. DNA-PKC differs from the conventional cryptology in that the keys and the ciphertexts are all biological molecules. The security of DNA-PKC relies on difficult biological problems instead of computational problems; thus DNA-PKC is immune from known attacks, especially the quantum computing based attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiesner S. Conjugate coding. SIGACT News, 1983, 15: 78–88

    Article  Google Scholar 

  2. Chou C W, Laurat J L, Deng H, et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science, 2007, 316: 1316–1320

    Article  Google Scholar 

  3. Bennett C H, Brassard G. Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India: Bangalore Press, 1984. 175–179

    Google Scholar 

  4. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  MathSciNet  Google Scholar 

  5. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MATH  MathSciNet  Google Scholar 

  6. Hemmer P, Wrachtrup J. Where is my quantum computer? Science, 2009, 324: 473–474

    Article  Google Scholar 

  7. Shor P W. Algorithms for quantum computation: discrete log and factoring. In: Goldwasser S, ed. Proceedings of the 35th Symposium on Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, 1994. 124–134

    Chapter  Google Scholar 

  8. Adleman L. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021–1023

    Article  Google Scholar 

  9. Ehud S, Binyamin G. RNA computing in a living cell. Science, 2008, 322: 387–388

    Article  Google Scholar 

  10. Guarnieri F, Fliss M, Bancroft C. Making DNA add. Science, 1996, 273: 220–223

    Article  Google Scholar 

  11. Sakamoto K, Gouzu H, Komiya K, et al. Molecular computation by DNA hairpin formation. Science, 2000, 288: 1223–1226

    Article  Google Scholar 

  12. Fastest DNA computer. Science, 2005, 308: 195

  13. Liu Q, Wang L, Frutos A G, et al. DNA computing on surfaces. Nature, 2000, 403: 175–179

    Article  Google Scholar 

  14. Roweis S, Winfree1 E, Burgoyne R, et al. A sticker based model for DNA computation. J Comput Biol, 1998, 5: 615–629

    Article  Google Scholar 

  15. Gifford D K. On the path to computation with DNA. Science, 1994, 266: 993–994

    Article  Google Scholar 

  16. Ouyang Q, Kaplan P D, Liu S, et al. DNA solution of the maximal clique problem. Science, 1997, 278: 446–449

    Article  Google Scholar 

  17. Lipton R J. Using DNA to solve NP-complete problems. Science, 1995, 268: 542–545

    Article  Google Scholar 

  18. Ravinderjit S, Braich R, Chelyapov N, et al. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 2002, 296: 499–502

    Article  Google Scholar 

  19. Adleman L M, Rothemund P W K, Roweiss S, et al. On applying molecular computation to the data encryption standard. J Comput Biol, 1999, 6: 53–63

    Article  Google Scholar 

  20. Boneh D, Dunworth C, Lipton R J. Breaking DES using a molecular computer. In: DNA Based Computers I. Providence, USA: American Mathematical Society, 1996. 37–65

    Google Scholar 

  21. Gehani A, LaBean T H, Reif J H. DNA-based cryptography. In: DNA Based Computers V. Providence, USA: American Mathematical Society, 2000. 233–249

    Google Scholar 

  22. Clelland C T, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature, 1999, 399: 533–534

    Article  Google Scholar 

  23. Leier A, Richter C, Banzhaf W, et al. Cryptography with DNA binary strands. Biosystems, 2000, 57: 13–22

    Article  Google Scholar 

  24. Xiao G Z, Lu M X, Qin L, et al. New field of cryptograhy: DNA cryptography. Chinese Sci Bull, 2006, 51: 1413–1420

    Article  MATH  MathSciNet  Google Scholar 

  25. Lu M X, Lai X J, Xiao G Z, et al. A symmetric-key cryptosystem with DNA technology. Sci China Ser F-Inf Sci, 2007, 50: 324–333

    Article  MATH  Google Scholar 

  26. Watson J D, Hopkins N H, Roberts J W, et al. Molecular Biology of the Gene. 4th ed. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc. 1987

    Google Scholar 

  27. Seeman N C. Nanotechnology and the double helix. Sci Am, 2004, 290: 34–43

    Article  Google Scholar 

  28. Fodor S P, Read J L, Pirrung M C, et al. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251: 767–773

    Article  Google Scholar 

  29. Pease A C, Solas D, Sullivan E J, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA, 1994, 91: 5022–5026

    Article  Google Scholar 

  30. Schena M, Shalon D, Ronald W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467–470

    Article  Google Scholar 

  31. Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res, 1996, 6: 639–645

    Article  Google Scholar 

  32. Weiler J, Gausepohll H, Hauser N, et al. Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Research, 1997, 25: 2792–2799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingXin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, X., Lu, M., Qin, L. et al. Asymmetric encryption and signature method with DNA technology. Sci. China Inf. Sci. 53, 506–514 (2010). https://doi.org/10.1007/s11432-010-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-0063-3

Keywords

Navigation