Skip to main content
Log in

Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider a multi-channel cognitive radio network (CRN) where each secondary user (SU) can only choose to sense a subset of channels. We formulate a joint optimization problem of sensing-channel selection, sensing time and power allocation under the constraints of average transmit power budget and average interference power budget, which maximizes the CRN’s total throughput. We propose a greedy algorithm to solve the joint optimization problem, which has much less computational complexity. Moreover, it is shown that the search space of the greedy algorithm can be further pruned. Finally, numerical results demonstrate that the greedy algorithm has comparable performance to the exhaustive search algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitola J, Maguire G Q. Cognitive radio: making software radios more personal. IEEE Pers Commun, 1999, 6: 13–18

    Article  Google Scholar 

  2. Haykin S. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun, 2005, 23: 201–220

    Article  Google Scholar 

  3. Akyildiz I F, Lee W Y, Vuran M C, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw, 2006, 50: 2127–2159

    Article  MATH  Google Scholar 

  4. Zhao Q, Swami A. A decision-theoretic framework for opportunistic spectrum access. IEEE Wirel Commu Mag, 2007, 14: 14–20

    Article  Google Scholar 

  5. Liang Y C, Zeng Y, Peh E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun, 2008, 7: 1326–1337

    Article  Google Scholar 

  6. Jiang H, Lai L, Fan R, et al. Optiaml selection of channel sensing order in cognitive radio. IEEE Trans Wirel Commun, 2009, 8: 297–307

    Article  Google Scholar 

  7. Fan R, Jiang H. Channel sensing-order setting in cognitive radio networks: a two-user case. IEEE Trans Veh Technol, 2009, 58: 4997–5008

    Article  Google Scholar 

  8. Cheng H T, Zhuang W. Simple channel sensing order in cognitive radio networks. IEEE J Sel Areas Commun, 2011, 29: 676–688

    Article  Google Scholar 

  9. Wang X. Joint sensing-channel selection and power control for cognitive radios. IEEE Trans Wirel Commun, 2011, 10: 958–967

    Article  Google Scholar 

  10. Pei Y, Liang Y C, Teh K C, et al. How much time is needed for wideband spectrum sensing. IEEE Trans Wirel Commun, 2009, 8: 5466–5471

    Article  Google Scholar 

  11. Stotas S, Nallanathan A. Optimal sensing time and power allocation in multiband cognitive radio networks. IEEE Trans Commun, 2011, 59: 226–235

    Article  Google Scholar 

  12. Fan R, Jiang H, Guo Q, et al. Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks. IEEE Trans Veh Technol, 2011, 60: 722–729

    Article  Google Scholar 

  13. Chavali V G, da Silva C R C M. Collaborative spectrum sensing based on a new SNR estimation and energy combining method. IEEE Trans Veh Technol, 2011, 60: 4024–4029

    Article  Google Scholar 

  14. Sanders F H, Ramsey B J, Lawrence V S. Broadband spectrum survey at Los Angeles, California. NTIA Report, 1997. 97–336

    Google Scholar 

  15. McHenry M A, Steadman K. Spectrum occupancy measurements, location 2 of 6: Tyson’s Square Center, Vienna, Virginia, April 9, 2004. Shared Spectrum Company Report, 2005. www.sharedspectrum.com/inc/content/measurements/nsf/2_NSF_Tysons_Square_Center Report.pdf

    Google Scholar 

  16. Wellens M, Baynast A D, Mahonen P. Exploiting historical spectrum occupancy information for adaptive spectrum sensing. In: Proceedings of IEEE Wireless Communiacations and Networking Conference, Las Vegas, 2008, 717–722

    Google Scholar 

  17. Yin S, Chen D, Zhang Q, et al. Mining spectrum usage data: a large-scale spectrum measurement study. IEEE Trans Mob Comput, 2012, 11: 1033–1046

    Article  Google Scholar 

  18. Kang X, Liang Y C, Garg H K, et al. Sensing-based spectrum sharing in cognitive radio networks. IEEE Trans Veh Technol, 2009, 58: 4649–4654

    Article  Google Scholar 

  19. Almalfouh S M, Stüber G L. Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Trans Veh Technol, 2011, 60: 1699–1713

    Article  Google Scholar 

  20. Stotas S, Nallanathan A. On the outage capacity of sensing-enhanced spectrum sharing cognitive radio systems in fading channels. IEEE Trans Commun, 2011, 59: 2871–2882

    Article  Google Scholar 

  21. Wu Y, Tsang D H K, Qian L, et al. Sensing based joint rate and power allocations for cognitive radio systems. IEEE Wirel Commun Lett, 2012, 1: 113–116

    Article  Google Scholar 

  22. Lim H J, Seol D Y, Im G H. Joint sensing adaptation and resource allocation for cognitive radio with imperfect sensing. IEEE Trans Wirel Commun, 2012, 60: 1091–1100

    Article  Google Scholar 

  23. Yu H, Tang W, Li S. Optimization of cooperative spectrum sensing in multiple-channel cognitive radio networks In: Proceedings of Global Telecommunications Conference, Houston, 2011. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuoGen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Tang, W. & Li, S. Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection. Sci. China Inf. Sci. 57, 1–8 (2014). https://doi.org/10.1007/s11432-013-4813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4813-x

Keywords

Navigation